

ICC-ES Evaluation Report

ESR-3829

Reissued April 2022 This report also contains:

Revised March 2024 - LABC Supplement

Subject to renewal April 2024 - FBC Supplement

ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed, nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use. There is no warranty by ICC Evaluation Service, LLC, express or implied, as to any finding or other matter in this report, or as to any product covered by the report.

Copyright © 2024 ICC Evaluation Service, LLC. All rights reserved.

DIVISION: 03 00 00—

CONCRETE

Section: 03 16 00— Concrete Anchors DIVISION: 05 00 00—

METALS

Section: 05 05 19— Post-Installed Concrete

Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 100
ADHESIVE ANCHORS
AND POST INSTALLED
REINFORCING BAR
CONNECTIONS IN
CRACKED AND
UNCRACKED
CONCRETE

1.0 EVALUATION SCOPE

Compliance with the following codes:

- 2024, 2021, 2018 and 2015 <u>International Building Code® (IBC)</u>
- 2024, 2021, 2018 and 2015 International Residential Code (IRC)

For evaluation for compliance with codes adopted by the <u>Los Angeles Department of Building and Safety</u> (LADBS), see ESR-3829 LABC and LARC Supplement.

Property evaluated:

Structural

2.0 USES

The Hilti HIT-RE 100 Adhesive Anchoring System is used as anchorage in cracked and uncracked normal-weight and lightweight concrete having a specified compressive strength, f'_c , of 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa) to resist static, wind and earthquake (Seismic Design Categories A through F) tension and shear loads.

The anchor system complies with anchors as described in Section 1901.3 of the 2024, 2021, 2018 and 2015 IBC. The anchor system may also be used where an engineered design is submitted in accordance with Section R301.1.3 of the IRC.

The Hilti HIT-RE 100 Post-Installed Reinforcing Bar system is an alternative to cast-in-place reinforcing bars governed by ACI 318 and IBC Chapter 19.

3.0 DESCRIPTION

3.1 General:

The Hilti HIT-RE 100 Adhesive Anchoring System and Post-Installed Reinforcing Bar System are comprised of the following components:

- Hilti HIT-RE 100 adhesive packaged in foil packs
- Adhesive mixing and dispensing equipment
- Equipment for hole cleaning and adhesive injection

The Hilti HIT-RE 100 Adhesive Anchoring System may be used with continuously threaded rod or deformed steel reinforcing bars as depicted in <u>Figure 4</u>. The Hilti HIT-RE 100 Post-Installed Reinforcing Bar system may only be used with deformed steel reinforcing bars. The primary components of the Hilti Adhesive Anchoring System, including the Hilti HIT-RE 100 Adhesive, HIT-RE-M static mixing nozzle and steel anchoring elements, are shown in <u>Figure 6</u> of this report.

The manufacturer's printed installation instructions (MPII), as included with each adhesive unit package, are replicated as Figure 7 of this report.

3.2 Materials:

3.2.1 Hilti HIT-RE 100 Adhesive: Hilti HIT-RE 100 Adhesive is an injectable, two-component epoxy adhesive. The two components are separated by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold. Hilti HIT-RE 100 is available in 11.1-ounce (330 ml), 16.9-ounce (500 ml), and 47.3-ounce (1400 ml) foil packs. The manifold attached to each foil pack is stamped with the adhesive expiration date. The shelf life, as indicated by the expiration date, applies to an unopened foil pack stored in a dry, dark environment and in accordance with Figure 7 of this report.

3.2.2 Hole Cleaning Equipment:

- **3.2.2.1 Standard Equipment:** Standard hole cleaning equipment, comprised of steel wire brushes and air nozzles, is described in Figure 7 of this report.
- **3.2.2.2 Hilti Safe-Set™ System:** For the elements described in Section 3.2.4, the Hilti TE-CD and TE-YD hollow carbide drill bit with a carbide drilling head conforming to ANSI B212.15 must be used. Used in conjunction with a Hilti vacuum with a minimum value for the maximum volumetric flow rate of 129 CFM (61 ℓ/s), the Hilti TE-CD or TE-YD drill bit will remove the drilling dust, automatically cleaning the hole.
- **3.2.3 Dispensers:** Hilti HIT-RE 100 must be dispensed with manual dispensers, pneumatic dispensers, or electric dispensers provided by Hilti.

3.2.4 Anchor Elements:

- **3.2.4.1 Threaded Steel Rods:** Threaded steel rods must be clean, continuously threaded rods (all-thread) in diameters as described in <u>Tables 4</u> and <u>9</u> and <u>Figure 4</u> of this report. Steel design information for common grades of threaded rods is provided in <u>Table 2</u>. Carbon steel threaded rods must be furnished with a 0.0002-inch-thick (0.005 mm) zinc electroplated coating in compliance with ASTM B633 SC 1 or must be hot-dip galvanized in compliance with ASTM A153, Class C or D. Stainless steel threaded rods must comply with ASTM F593 or ISO 3506 A4. Threaded steel rods must be straight and free of indentations or other defects along their length. The ends may be stamped with identifying marks, and the embedded end may be blunt cut or cut on the bias to a chisel point.
- **3.2.4.2 Steel Reinforcing Bars for use in Post-Installed Anchor Applications:** Steel reinforcing bars are deformed bars as described in <u>Table 3</u> of this report. <u>Tables 5</u>, <u>9</u>, and <u>13</u> and <u>Figure 4</u> summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight, and free of mill scale, rust, mud, oil and other coatings (other than zinc) that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation except as set forth in ACI 318-19 Section 26.6.3.2(b) (ACI 318-14 Section 26.6.3.1(b)) with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.
- **3.2.4.3 Ductility:** In accordance with ACI 318-19 and ACI 318-14 Section 2.3, in order for a steel element to be considered ductile, the tested elongation must be at least 14 percent and reduction of area must be at least 30 percent. Steel elements with a tested elongation of less than 14 percent or a reduction of area of less than 30 percent, or both, are considered brittle. Values for various steel materials are provided in <u>Tables 2</u> and <u>3</u> of this report. Where values are nonconforming or unstated, the steel must be considered brittle.
- **3.2.5** Steel Reinforcing Bars for use in Post-Installed Reinforcing Bar Connections: Steel reinforcing bars used in post-installed reinforcing bar connections are deformed bars (rebar). <u>Tables 16</u>, <u>17</u>, and <u>18</u> and <u>Figure 4</u> summarize reinforcing bar size ranges. The embedded portions of reinforcing bars must be straight and free of millscale, rust, and other coatings that may impair the bond with the adhesive. Reinforcing bars must not be bent after installation, except as set forth in ACI 318-19 Section 26.6.3.2(b) (ACI 318-14 Section 26.6.3.1(b)) with the additional condition that the bars must be bent cold, and heating of reinforcing bars to facilitate field bending is not permitted.

3.3 Concrete:

Normal-weight and lightweight concrete must comply with Sections 1903 and 1905 of the IBC, as applicable. The specified compressive strength of the concrete must be from 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).

4.0 DESIGN AND INSTALLATION

4.1 Strength Design of Post-Installed Anchors:

Refer to <u>Table 1</u> for the design parameters for specific installed elements, and refer to <u>Figure 5</u> and Section 4.1.4 for a flowchart to determine the applicable design bond strength or pullout strength.

4.1.1 General: The design strength of anchors under the 2024 and 2021 IBC, as well as the 2024 and 2021 IRC, must be determined in accordance with ACI 318-19 Chapter 17 and this report. The design strength of anchors under the 2018 and 2015 IBC, as well as the 2018 and 2015 IRC, must be determined in accordance with ACI 318-14 Chapter 17 and this report.

Design parameters are provided in <u>Tables 4</u> through <u>15</u> and based on ACI 318-19 for use with the 2024 and 2021 IBC (ACI 318-14 for use with the 2018 and 2015 IBC) unless noted otherwise in Sections 4.1.1 through 4.1.11 of this report.

The strength design of anchors must comply with ACI 318-19 Section 17.5.1.2 (ACI 318-14 Section 17.3.1), except as required in ACI 318-19 Section 17.10 (ACI 318-14 Section 17.2.3).

Strength reduction factors, ϕ , as given in ACI 318-19 Section 17.5.3 (ACI 318-14 Section 17.3.3) must be used for load combinations calculated in accordance with Section 1605.1 of the 2024 and 2021 IBC (Section 1605.2 of the 2018 and 2015 IBC) or Section 5.3 of ACI 318 (-19 or -14).

- **4.1.2 Static Steel Strength in Tension:** The nominal static steel strength of a single anchor in tension, N_{sa} , in accordance with ACI 318-19 Section 17.6.1.2 (ACI 318-14 Section 17.4.1.2) and the associated strength reduction factors, ϕ , in accordance with ACI 318-19 Section 17.5.3 (ACI 318-14 Section 17.3.3) are provided in the tables outlined in Table 1 for the anchor element types included in this report.
- **4.1.3 Static Concrete Breakout Strength in Tension:** The nominal concrete breakout strength of a single anchor or group of anchors in tension, N_{cb} or N_{cbg} , must be calculated in accordance with ACI 318-19 Section 17.6.2 (ACI 318-14 Section 17.4.2) with the following addition:

The basic concrete breakout strength of a single anchor in tension, N_b , must be calculated in accordance with ACI 318-19 Section 17.6.2.2 (ACI 318-14 Section 17.4.2.2) using the values of $k_{c,cr}$ and $k_{c,uncr}$ as described in this report. Where analysis indicates no cracking in accordance with ACI 318-19 Section 17.6.2.5 (ACI 318-14 Section 17.4.2.6), N_b must be calculated using $k_{c,uncr}$ and $\Psi_{c,N}$ = 1.0. See Table 1. For anchors in lightweight concrete, see ACI 318-19 Section 17.2.4 (ACI 318-14 Section 17.2.6). The value of f_c used for calculation must be limited to 8,000 psi (55 MPa) in accordance with ACI 318-19 Section 17.3.1 (ACI 318-14 Section 17.2.7). Additional information for the determination of nominal bond strength in tension is given in Section 4.1.4 of this report.

4.1.4 Static Bond Strength in Tension: The nominal static bond strength of a single adhesive anchor or group of adhesive anchors in tension, N_a or N_{ag} , must be calculated in accordance with ACI 318-19 Section 17.6.5 (ACI 318-14 Section 17.4.5). Bond strength values are a function of the concrete compressive strength, whether the concrete is cracked or uncracked, the concrete temperature range, and the installation conditions (dry, water-saturated, etc.). The resulting characteristic bond strength shall be multiplied by the associated strength reduction factor ϕ_{nn} as follows:

DRILLING METHOD	CONCRETE TYPE	PERMISSIBLE INSTALLATION CONDITIONS	BOND STRENGTH	ASSOCIATED STRENGTH REDUCTION FACTOR
		Dry	Tk,uncr	ϕ d
	Uncracked	Water-saturated	Tk,uncr	<i>ф</i> ws
	Uncracked	Water-filled hole	Tk,uncr	$\phi_{\sf wf}$
Hammer-drill		Underwater application	Tk,uncr	ϕ uw
nammer-um	Cracked	Dry	Tk,cr	ϕ d
		Water-saturated	Tk,cr	φws
		Water-filled hole	Tk,cr	$\phi_{\sf wf}$
		Underwater application	Tk,cr	ϕ uw
Hammer-drill	Uncracked	Dry	Tk,uncr	$\phi_{ extsf{d}}$
with Hilti TE-	2112121212	Water-saturated	Tk,uncr	$\phi_{\sf ws}$
YD or TE-CD		Dry	Tk,cr	$\phi_{ m d}$
Hollow Drill Bit	Cracked	Water-saturated	Tk,cr	φws

- <u>Figure 5</u> of this report presents a bond strength design selection flowchart. Strength reduction factors for determination of the bond strength are outlined in <u>Table 7</u>, <u>8</u>, <u>11</u>, <u>12</u> and <u>15</u> of this report. Adjustments to the bond strength may also be made for increased concrete compressive strength as noted in the footnotes to the bond strength tables.
- **4.1.5** Static Steel Strength in Shear: The nominal static strength of a single anchor in shear as governed by the steel, V_{sa} , in accordance with ACI 318-19 Section 17.7.1.2 (ACI 318-14 Section 17.5.1.2) and strength reduction factors, ϕ , in accordance with ACI 318-19 Section 17.5.3 (ACI 318-14 Section 17.3.3) are given in the tables outlined in Table 1 for the anchor element types included in this report.
- **4.1.6 Static Concrete Breakout Strength in Shear:** The nominal static concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , must be calculated in accordance with ACI 318-19 Section 17.7.2 (ACI 318-14 Section 17.5.2) based on information given in the tables outlined in <u>Table 1</u>. The basic concrete breakout strength of a single anchor in shear, V_b , must be calculated in accordance with ACI 318-19 Section 17.7.2.2 (ACI 318-14 Section 17.5.2.2) using the values of d given in the tables as outlined in <u>Table 1</u> for the corresponding anchor steel in lieu of d_a (2024, 2021, 2018 and 2015 IBC). In addition, h_{ef} must be substituted for ℓ_e . In no case must ℓ_e exceed d d. The value of d must be limited to a maximum of 8,000 psi (55 MPa) in accordance with ACI 318-19 Section 17.3.1 (ACI 318-14 Section 17.2.7).
- **4.1.7 Static Concrete Pryout Strength in Shear:** The nominal static pryout strength of a single anchor or group of anchors in shear, V_{cp} or V_{cpg} , must be calculated in accordance with ACI 318-19 Section 17.7.3 (ACI 318-14 Section 17.5.3).
- **4.1.8 Interaction of Tensile and Shear Forces:** For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318-19 Section 17.8 (ACI 318-14 Section 17.6).
- **4.1.9 Minimum Member Thickness,** h_{min} , **Anchor Spacing,** s_{min} and **Edge Distance,** c_{min} : In lieu of ACI 318-19 Section 17.9.2 (ACI 318-14 Sections 17.7.1 and 17.7.3), values of s_{min} and c_{min} described in this report must be observed for anchor design and installation. Likewise, in lieu of ACI 318-19 Section 17.9.4 (ACI 318-14 Section 17.7.5), the minimum member thicknesses, h_{min} , described in this report must be observed for anchor design and installation. For adhesive anchors that will remain untorqued, ACI 318-19 Section 17.9.3 (ACI 318-14 Section 17.7.4) applies.

For edge distances c_{ai} and anchor spacing s_{ai} , the maximum torque T_{max} shall comply with the following requirements:

REDUCED MAXIMUM INSTALLATION TORQUE $T_{max,red}$ FOR EDGE DISTANCES $c_{ai} < (5 \times d_a)$							
EDGE DISTANCE, c_{ai} MINIMUM ANCHOR SPACING, s_{ai} MAXIMUM TORQUE, $T_{max,red}$							
1.75 in. (45 mm) $\leq c_{ai} < 5 \times d_a$	5 x <i>d_a</i> ≤ <i>s_{ai}</i> < 16 in.	0.3 x T _{max}					
in a mility = day vo x da	s _{ai} ≥ 16 in. (406 mm)	0.5 x T _{max}					

4.1.10 Critical Edge Distance c_{ac} and $\psi_{cp,Na}$: The modification factor, $\psi_{cp,Na}$, must be determined in accordance with ACI 318-19 Section 17.6.5.5 (ACI 318-14 Section 17.4.5.5) except as noted below:

For all cases where c_{Na}/c_{ac} <1.0, $\psi_{cp,Na}$ determined from ACI 318-19 Eq. 17.6.5.5.1b (ACI 318-14 Eq. 17.4.5.5b) need not be taken less than c_{Na}/c_{ac} . For all other cases, $\psi_{cp,Na}$ shall be taken as 1.0.

The critical edge distance, c_{ac} , must be calculated according to Eq. 17.6.5.5.1c for ACI 318-19 (Eq. 17.4.5.5c for ACI 318-14) in lieu of ACI 318-19 Section 17.9.5 (ACI 318-14 Section 17.7.6).

$$c_{ac} = h_{ef} \cdot \left(\frac{\tau_{k, uncr}}{1160}\right)^{0.4} \cdot \left[3.1 - 0.7 \frac{h}{h_{ef}}\right]$$

(Eq. 17.6.5.5.1c for ACI 318-19 or Eq 17.4.5.5c for ACI 318-14)

where

 $\left[\frac{h}{h_{\rm nd}}\right]$ need not be taken as larger than 2.4; and

 $\tau_{k,uncr}$ = the characteristic bond strength stated in the tables of this report whereby $\tau_{k,uncr}$ need not be taken as larger than:

$$au_{k,uncr} = \frac{k_{uncr} \sqrt{h_{ef} f_c'}}{\pi \cdot d_a}$$
 Eq. (4-1)

4.1.11 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, the design must be performed according to ACI 318-19 Section 17.10 (ACI 318-14 Section 17.2.3). Modifications to ACI 318-19 Section 17.10 (ACI 318-14 Section 17.2.3) shall be applied under Section 1905.7 of the 2024 IBC or Section 1905.1.8 of the 2021, 2018 and 2015 IBC.

The nominal steel shear strength, V_{sa} , must be adjusted by $\alpha_{V,seis}$ as given in the tables summarized in Table 1 for the anchor element types included in this report. For tension, the nominal pullout strength $N_{p,cr}$ or bond strength τ_{cr} must be adjusted by $\alpha_{N,seis}$. See Tables 7, 8, 11, 12 and 15.

- 4.2 Strength Design of Post-Installed Reinforcing Bars:
- **4.2.1 General:** The design of straight post-installed deformed reinforcing bars must be determined in accordance with ACI 318 rules for cast-in place reinforcing bar development and splices and this report.

Examples of typical applications for the use of post-installed reinforcing bars are illustrated in <u>Figures 2</u> and <u>3</u> of this report.

4.2.2 Determination of bar development length I_d **:** Values of I_d must be determined in accordance with the ACI 318 development and splice length requirements for straight cast-in place reinforcing bars.

Exceptions:

- 1. For uncoated and zinc-coated (galvanized) post-installed reinforcing bars, the factor \Box_e shall be taken as 1.0. For all other cases, the requirements in ACI 318-19 Section 25.4.2.5 (ACI 318-14 Section 25.4.2.4) shall apply.
- 2. When using alternate methods to calculate the development length (e.g., anchor theory), the applicable factors for post-installed anchors generally apply.
- **4.2.3 Minimum Member Thickness**, h_{min} , **Minimum Concrete Cover**, $c_{c,min}$, **Minimum Concrete Edge Distance**, $c_{b,min}$, **Minimum Spacing**, $s_{b,min}$. For post-installed reinforcing bars, there is no limit on the minimum member thickness. In general, requirements on concrete cover and spacing applicable to straight cast-in bars designed in accordance with ACI 318-19 under the 2024 and 2021 IBC (ACI 318-14 under the 2018 and 2015 IBC) shall be maintained.

For post-installed reinforcing bars installed at embedment depths, h_{ef} , larger than 20d ($h_{ef} > 20$ d), the minimum concrete cover shall be as follows:

REBAR SIZE	MINIMUM CONCRETE COVER, Cc,min
d _b ≤ No. 6 (16 mm)	1 ³ / ₁₆ in. (30mm)
No. $6 < d_b \le No. 10$	1 ⁹ / ₁₆ in.
$(16mm < d_b \le 32mm)$	(40mm)

The following requirements apply for minimum concrete edge and spacing for $h_{ef} > 20$ d:

Required minimum edge distance for post-installed reinforcing bars (measured from the center of the bar):

 $c_{b,min} = d_0/2 + c_{c,min}$

Required minimum center-to-center spacing between post-installed bars:

 $s_{b,min} = d_0 + c_{c,min}$

Required minimum center-to-center spacing from existing (parallel) reinforcing:

 $s_{b,min} = d_b/2$ (existing reinforcing) + $d_0/2$ + $c_{c,min}$

All other requirements applicable to straight cast-in place bars designed in accordance with ACI 318 shall be maintained.

4.2.4 Design Strength in Seismic Design Categories C, D, E and F: In structures assigned to Seismic Category C, D, E or F under the IBC or IRC, design of straight post-installed reinforcing bars must take into account the provisions of ACI 318-19 under the 2024 and 2021 IBC (ACI 318-14 under the 2018 and 2015 IBC) Chapter 18. The value of f_c to be used in calculations per ACI 318-19 Sections 25.4.2.3, 25.4.2.4 and 25.4.9.2 (ACI 318-14 Sections 25.4.2.2, 25.4.2.3, and 25.4.9.2) shall not exceed 2,500 psi.

4.3 Installation:

Installation parameters are illustrated in <u>Figure 1</u>. Installation must be in accordance with ACI 318-19 Section 26.7.2 (ACI 318-14 Sections 17.8.1 and 17.8.2). Anchor and post-installed reinforcing bar locations must comply with this report and the plans and specifications approved by the code official. Installation of the Hilti HIT-RE 100 Adhesive Anchor and Post-Installed Reinforcing Bar Systems must conform to the

manufacturer's printed installation instructions (MPII) included in each unit package as provided in <u>Figure 7</u> of this report. The MPII contains additional requirements for combinations of drill hole depth, diameter, and dispensing and installation equipment.

The initial cure time, $t_{cure,ini}$, as noted in Figure 7 of this report, is intended for rebar applications only and is the time where rebar and concrete formwork preparation may continue. Between the initial cure time and the full cure time, $t_{cure,final}$, the adhesive has a limited load bearing capacity. Do not apply a torque or load on the rebar during this time.

4.4 Special Inspection:

Periodic special inspection must be performed where required in accordance with Section 1705.1.1 and Table 1705.3 of the 2024, 2021, 2018 and 2015 IBC, and this report. The special inspector must be on the jobsite initially during anchor and post-installed reinforcing bar installation to verify anchor and post-installed reinforcing bar type and dimensions, concrete type, concrete compressive strength, adhesive identification and expiration date, hole dimensions, hole cleaning procedures, spacing, edge distances, concrete thickness, anchor and post-installed reinforcing bars embedment, tightening torque and adherence to the manufacturer's printed installation instructions.

The special inspector must verify the initial installations of each type and size of adhesive anchor and post-installed reinforcing bar by construction personnel on site. Subsequent installations of the same anchor and post-installed reinforcing bar type and size by the same construction personnel are permitted to be performed in the absence of the special inspector. Any change in the anchor and post-installed reinforcing bar product being installed or the personnel performing the installation requires an initial inspection. For ongoing installations over an extended period, the special inspector must make regular inspections to confirm correct handling and installation of the product.

Continuous special inspection of adhesive anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed in accordance with ACI 318-19 Sections 26.7.2, 26.7.1(j) and 26.13.3.2(e) (ACI 318-14 Sections 17.8.2.4, 26.7.1(h), and 26.13.3.2(c)).

Under the IBC, additional requirements as set forth in Sections 1705, 1706, and 1707 must be observed, where applicable.

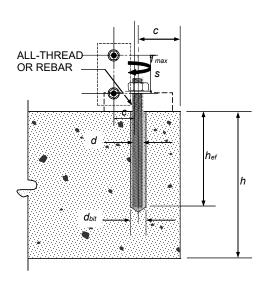
5.0 CONDITIONS OF USE:

The Hilti HIT-RE 100 Adhesive Anchor System and Post-Installed Reinforcing Bars described in this report complies with or is a suitable alternative to what is specified in the codes listed in Section 1.0 of this report, subject to the following conditions:

- 5.1 Hilti HIT-RE 100 Adhesive anchors and post-installed reinforcing bars must be installed in accordance with the manufacturer's printed installation instructions as included in the adhesive packaging and provided in <u>Figure 7</u> of this report.
- **5.2** The anchors and post-installed reinforcing bars must be installed in cracked and uncracked normal-weight and lightweight concrete having a specified compressive strength f'_c = 2,500 psi to 8,500 psi (17.2 MPa to 58.6 MPa).
- **5.3** The values of f_c used for calculation purposes must not exceed 8,000 psi (55.1 MPa) except as noted in Section 4.2.4 of this report.
- **5.4** The concrete shall have attained its minimum compressive strength prior to the installation of anchors and post-installed reinforcing bars.
- 5.5 Anchors and post-installed reinforcing bars must be installed in concrete base materials in holes predrilled in accordance with the instructions in <u>Figure 7</u>, using carbide-tipped drill bits manufactured with the range of maximum and minimum drill-tip dimensions specified in ANSI B212.15-1994.
- 5.6 Loads applied to the anchors must be adjusted in accordance with Section 1605.1 of the 2024 and 2021 IBC or Section 1605.2 of the 2018 and 2015 IBC for strength design and in accordance with Section 1605.1 of the 2024 and 2021 IBC or Section 1605.3 of the 2018 and 2015 IBC for allowable stress design.
- **5.7** Hilti HIT-RE 100 adhesive anchors and post-installed reinforcing bars are recognized for use to resist short-term and long-term loads, including wind and earthquake, subject to the conditions of this report.
- **5.8** In structures assigned to Seismic Design Category C, D, E or F under the IBC or IRC, anchor strength must be adjusted in accordance with Section 4.1.11 of this report and post-installed reinforcing bars must comply with Section 4.2.4 of this report.
- **5.9** Hilti HIT-RE 100 adhesive anchors and post-installed reinforcing bars are permitted to be installed in concrete that is cracked or that may be expected to crack during the service life of the anchor, subject to the conditions of this report.

- 5.10 Anchor strength design values must be established in accordance with Section 4.1 of this report.
- **5.11** Post-installed reinforcing bar development and splice length is established in accordance with Section 4.2 of this report.
- **5.12** Minimum anchor spacing and edge distance as well as minimum member thickness must comply with the values noted in this report.
- **5.13** Prior to installation, calculations and details demonstrating compliance with this report must be submitted to the code official. The calculations and details must be prepared by a registered design professional where required by the statutes of the jurisdiction in which the project is to be constructed.
- **5.14** Anchors and post-installed reinforcing bars are not permitted to support fire-resistive construction. Where not otherwise prohibited by the code, Hilti HIT-RE 100 adhesive anchors are permitted for installation in fire-resistive construction provided that at least one of the following conditions is fulfilled:
 - Anchors and post-installed reinforcing bars are used to resist wind or seismic forces only.
 - Anchors and post-installed reinforcing bars that support gravity load—bearing structural elements are within a fire-resistive envelope or a fire-resistive membrane, are protected by approved fire-resistive materials, or have been evaluated for resistance to fire exposure in accordance with recognized standards.
 - · Anchors and post-installed reinforcing bars are used to support nonstructural elements.
- 5.15 Since an ICC-ES acceptance criteria for evaluating data to determine the performance of adhesive anchors and post-installed reinforcing bars subjected to fatigue or shock loading is unavailable at this time, the use of these anchors under such conditions is beyond the scope of this report.
- **5.16** Use of zinc-plated carbon steel threaded rods or steel reinforcing bars is limited to dry, interior locations.
- 5.17 Use of hot-dipped galvanized carbon steel and stainless steel rods is permitted for exterior exposure or damp environments.
- 5.18 Steel anchoring materials in contact with preservative-treated and fire-retardant-treated wood must be of zinc-coated carbon steel or stainless steel. The minimum coating weights for zinc-coated steel must comply with ASTM A153.
- **5.19** Periodic special inspection must be provided in accordance with Section 4.4 of this report. Continuous special inspection for anchors and post-installed reinforcing bars installed in horizontal or upwardly inclined orientations to resist sustained tension loads must be provided in accordance with Section 4.4 of this report.
- **5.20** Installation of anchors and post-installed reinforcing bars in horizontal or upwardly inclined orientations to resist sustained tension loads shall be performed by personnel certified by an applicable certification program in accordance with ACI 318-19 Section 26.7.2(e) (ACI 318-14 Sections 17.8.2.2 or 17.8.2.3).
- **5.21** Hilti HIT-RE 100 adhesive anchors may be used to resist tension and shear forces in floor, wall, and overhead installations only if installation is into concrete with a temperature between 41°F and 104°F (5°C and 40°C) for threaded rods and rebar. Overhead installations for hole diameters larger than ⁷/₁₆-inch or 10mm require the use of piston plugs (HIT-SZ) during injection to the back of the hole. ⁷/₁₆-inch or 10mm diameter holes may be injected directly to the back of the hole with the use of extension tubing on the end of the nozzle. The adhesive anchor must be supported until fully cured (i.e., with Hilti HIT-OHW wedges, or other suitable means). Where temporary restraint devices are used, their use shall not result in impairment of the anchor shear resistance.
- **5.22** Hilti HIT-RE 100 adhesive is manufactured by Hilti GmbH, Kaufering, Germany, under a quality-control program with inspections by ICC-ES.

6.0 EVIDENCE SUBMITTED


Data in accordance with the ICC-ES Acceptance Criteria for Post-installed Adhesive Anchors in Concrete (AC308), dated October 2022, which incorporates requirements in ACI 355.4 (-19 and -11), including but not limited to tests under freeze/thaw conditions (Table 3.2, Test Series 6); and quality-control documentation.

7.0 IDENTIFICATION

- **7.1** The ICC-ES mark of conformity, electronic labeling, or the evaluation report number (ICC-ES ESR-3829) along with the name, registered trademark, or registered logo of the report holder must be included in the product label.
- **7.2** Hilti HIT-RE 100 adhesive is identified by packaging labeled with the company name (Hilti) and address, product name, lot number, expiration date.
- **7.3** Threaded rods, nuts, washers, and deformed reinforcing bars are standard elements and must conform to applicable national or international specifications.

7.4 The report holder's contact information is the following:

HILTI, INC.
7250 DALLAS PARKWAY, SUITE 1000
PLANO, TEXAS 75024
(800) 879-8000
www.hilti.com

THREADED ROD/REINFORCING BAR
FIGURE 1—INSTALLATION PARAMETERS FOR POST-INSTALLED ADHESIVE ANCHORS

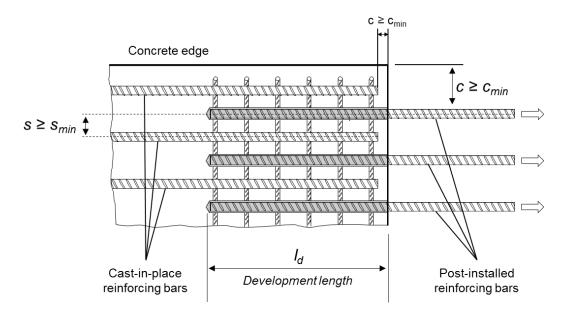


FIGURE 2—INSTALLATION PARAMETERS FOR POST-INSTALLED REINFORCING BARS

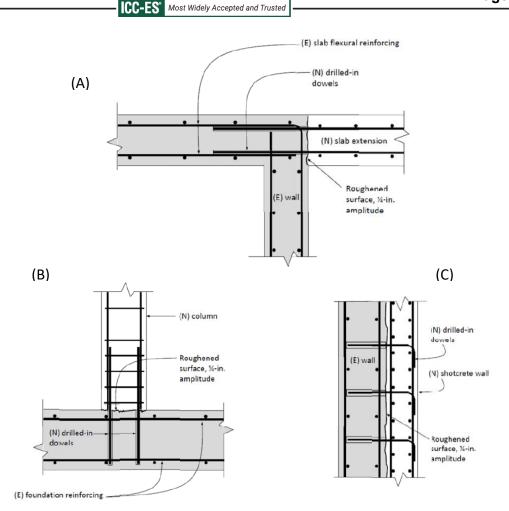
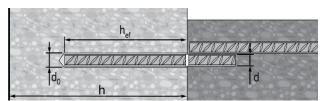



FIGURE 3—(A) TENSION LAP SPLICE WITH EXISTING FLEXURAL REINFORCEMENT; (B) TENSION DEVELOPMENT OF COLUMN DOWELS; (C) DEVELOPMENT OF SHEAR DOWELS FOR NEW ONLAY SHEAR WALL

DEFORMED REINFORCEMENT

US Rebar

VIZIZIZIZIZIZI.	$ ot\!\!Q$ d $_0$	h _{ef}
d	[inch]	[inch]
#3	1/2	23/8221/2
# 4	5/8	23/430
#5	3/4	3 1/837 1/2
#6	7/8	31/215
" 0	1	1545
#7	1	31/2171/2
π /	1 1/8	17 1/252 1/2
#8	1 1/8	420
# 0	1 1/4	2060
#9	1 3/8	4 1/267 1/2
#10	11/2	575
# 11	1 ³ / ₄	5 1/282 1/2

THREADED ROD

HAS / HIT-V					
Ø d [inch]	Ø d₀ [inch]	h _{ef} [inch]	Ø d _f [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	7/16	23/871/2	⁷ / ₁₆	15	20
1/2	⁹ /16	2 ³ / ₄ 10	⁹ /16	30	41
5/8	3/4	31/8 121/2	11/16	60	81
3/4	7/8	3 ½ 15	13/16	100	136
7/8	1	31/2 171/2	¹⁵ / ₁₆	125	169
1	1 1/8	420	1 1/8	150	203
1 1/4	13/8	5 25	1 3/8	200	271

CA Rebar

	$ \emptyset d_0 $	h _{ef}
d	[inch]	[mm]
10 M	9/16	70678
15 M	3/4	80960
20 M	1	901170
25 M	1 ½ (32 mm)	1011512
30 M	11/2	1201794

HIT-V

mmmmmm Im	\emptyset d ₀	h _{ef}	Ø d _f	T_{max}
Ø d [mm]	[mm]	[mm]	[mm]	[Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	96480	26	200
M27	30	108540	30	270
M30	35	120600	33	300

EU Rebar

EU NEBAI		
Ø d [mm]	Ø d₀ [mm]	h _{ef} [mm]
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	961440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	1201800
32	40	1281920

FIGURE 4—INSTALLATION PARAMETERS

TABLE 1—DESIGN TABLE INDEX

Decien T	Fract	tional	Metric		
Design T	Table	Page	Table	Page	
Standard Threaded Rod	Steel Strength - N_{sa} , V_{sa}	4	11	9	16
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg} , V_{cpg}	6	13	10	17
	Bond Strength - Na, Nag	8	15	12	19

Design Table			Fractional		EU Metric		Canadian	
			Page	Table	Page	Table	Page	
Steel Reinforcing Bars Steel Strength - N _{sa} , V _{sa}		5	12	9	16	13	20	
	Concrete Breakout - N_{cb} , N_{cbg} , V_{cb} , V_{cpg} , V_{cpg}	6	13	10	17	14	21	
	Bond Strength - Na, Nag	7	14	11	18	15	22	
	Determination of development length for post-installed reinforcing bar connections	16	23	17	23	18	24	

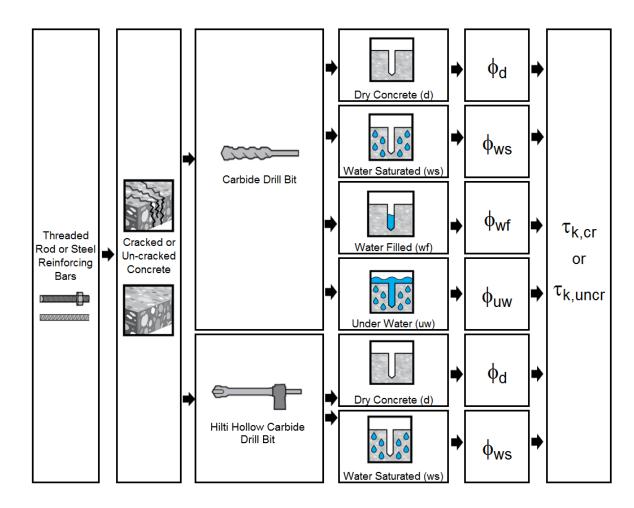


FIGURE 5—FLOWCHART FOR THE ESTABLISHMENT OF DESIGN BOND STRENGTH

TABLE 2—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON CARBON AND STAINLESS STEEL THREADED ROD MATERIALS¹

THREADED ROD SPECIFICATION		Minimum specified ultimate strength, f _{uta}	Minimum specified yield strength 0.2 percent offset, fya	f _{uta} /f _{ya}	Elongation, min. percent ⁶	Reduction of Area, min. percent	Specification for nuts ⁸	
	ASTM A193 ² Grade B7 $\leq 2^{1}/_{2}$ in. (≤ 64 mm)	psi (MPa)	125,000 (862)	105,000 (724)	1.19	16	50	ASTM A563 Grade DH
	ASTM F568M3 Class 5.8 M5 (1/4 in.) to M24 (1 in.) (equivalent to ISO 898-1)	psi (MPa)	72,500 (500)	58,000 (400)	1.25	10	35	ASTM A563 Grade DH ⁹ DIN 934 (8-A2K)
STEEL	ASTM F1554, Grade 36 ⁶	psi (MPa)	58,000 (400)	36,000 (248)	1.61	23	40	ASTM A194 or ASTM A563
CARBON 8	ASTM F1554, Grade 55 ⁶	psi (MPa)	75,000 (517)	55,000 (379)	1.36	21	30	ASTM A194 or ASTM A563
CAR	ASTM F1554, Grade 105 ⁶	psi (MPa)	125,000 (862)	105,000 (724)	1.19	15	45	ASTM A194 or ASTM A563
	ISO 898-1 ³ Class 5.8	MPa (psi)	500 (72,500)	400 (58,000)	1.25	22	-	DIN 934 Grade 6
	ISO 898-1 ³ Class 8.8	MPa (psi)	800 (116,000)	640 (92,800)	1.25	12	52	DIN 934 Grade 8
	ASTM F593 ⁴ CW1 (316) 1/ ₄ -in. to 5/ ₈ -in.	psi (MPa)	100,000 (689)	65,000 (448)	1.54	20	-	ASTM F594
STEEL	ASTM F593 ⁴ CW2 (316) $^{3}/_{4}$ -in. to $1^{1}/_{2}$ -in.	psi (MPa)	85,000 (586)	45,000 (310)	1.89	25	-	ASTM F594
FAINLESS	ASTM A193 Grade 8(M), Class 1 ² 1 ¼-in.	psi (MPa)	75,000 (517)	30,000 (207)	2.50	30	50	ASTM F594
	ISO 3506-1 ⁵ A4-70 M8 – M24	MPa (psi)	700 (101,500)	450 (65,250)	1.56	40	-	ISO 4032
	ISO 3506-1 ⁵ A4-50 M27 – M30	MPa (psi)	500 (72,500)	210 (30,450)	2.38	40	-	ISO 4032

¹Hilti HIT-RE 100 adhesive may be used in conjunction with all grades of continuously threaded carbon or stainless steel rod (all-thread) that comply with the code reference standards and that have thread characteristics comparable with ANSI B1.1 UNC Coarse Thread Series or ANSI B1.13M M Profile Metric Thread Series. Values for threaded rod types and associated nuts supplied by Hilti are provided here.

TABLE 3—SPECIFICATIONS AND PHYSICAL PROPERTIES OF COMMON STEEL REINFORCING BARS

REINFORCING BAR SPECIFICATION		Minimum specified ultimate strength, f_{uta}	Minimum specified yield strength, f_{ya}
ASTM A615 ¹ Gr. 60	psi	80,000	60,000
ASTIVI A015' GI. 00	(MPa)	(550)	(414)
ASTM A615 ¹ Gr. 40	psi	60,000	40,000
ASTIM A015 GI. 40	(MPa)	(414)	(276)
ASTM A706 ² Gr. 60	psi	80,000	60,000
ASTM A700- GI. 00	(MPa)	(550)	(414)
DIN 488 ³ BSt 500	MPa	550	500
DIN 400° BSI 500	(psi)	(79,750)	(72,500)
CAN/CSA-G30.18 ⁴ Gr. 400	MPa	540	400
CAN/CSA-G30.10 GI. 400	(psi)	(78,300)	(58,000)

¹Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

²Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service

³Mechanical properties of fasteners made of carbon steel and alloy steel – Part 1: Bolts, screws and studs

⁴Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs

⁵Mechanical properties of corrosion-resistant stainless steel fasteners – Part 1: Bolts, screws and studs

⁶Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength

⁷Based on 2-in. (50 mm) gauge length except for A 193, which are based on a gauge length of 4d and ISO 898, which is based on 5d.

⁸Nuts of other grades and styles having specified proof load stresses greater than the specified grade and style are also suitable. Nuts must have specified proof load stresses equal to or greater than the minimum tensile strength of the specified threaded rod.

⁹Nuts for fractional rods.

²Standard Specification for Low Alloy Steel Deformed and Plain Bars for Concrete Reinforcement

³Reinforcing steel; reinforcing steel bars; dimensions and masses

⁴Billet-Steel Bars for Concrete Reinforcement

Fractional Threaded Rod

Steel Strength

TABLE 4—STEEL DESIGN INFORMATION FOR FRACTIONAL THREADED ROD

						Nomin	al rod diamet	ter (in.)1		
DESIGN	INFORMATION	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1	11/4
			in.	0.375	0.5	0.625	0.75	0.875	1	1.25
Rod outs	de diameter	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)
D . "		4	in. ²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057	0.9691
коа епес	tive cross-sectional area	Ase	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)
		N	lb	5,620	10,290	16,385	24,250	33,470	43,910	70,260
	Nominal strength as governed by steel	N _{sa}	(kN)	(25.0)	(45.8)	(72.9)	(107.9)	(148.9)	(195.3)	(312.5)
18-1 5.8	strength	V_{sa}	lb	3,370	6,175	9,830	14,550	20,085	26,345	42,155
ISO 898-1 Class 5.8		* 58	(kN)	(15.0)	(27.5)	(43.7)	(64.7)	(89.3)	(117.2)	(187.5)
<u>8</u> 8	Reduction for seismic shear	αv,seis	-				0.70			
	Strength reduction factor for tension ²	φ	-				0.65			
	Strength reduction factor for shear ²	ϕ	-			Т	0.60		1	1
		N _{sa}	lb	9,685	17,735	28,250	41,810	57,710	75,710	121,135
B7	Nominal strength as governed by steel		(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
193	strength	V_{sa}	lb	5,810	10,640	16,950	25,085	34,625	45,425	72,680
∀	Reduction for seismic shear		(kN)	(25.9)	(47.3)	(75.4)	(111.6) 0.70	(154.0)	(202.1)	(323.3)
ASTM A193	Strength reduction factor for tension ²	αV,seis ₁	-				0.75			
٩	Strength reduction factor for shear ²	φ	-				0.75			
	Strength reduction factor for shear-	φ	- Ib	_	8,230	13,110	19,400	26,780	35,130	56,210
<u>~</u>	Nominal strength as governed by steel	N_{sa}	(kN)	_	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)	(250.0)
<u>12</u>	strength		lb	-	4,940	7,865	11,640	16,070	21,080	33,725
-15t 36		V_{sa}	(kN)	-	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)	(150.0)
ASTM F1554 Gr. 36	Reduction for seismic shear	αv,seis	-				0.60			
٩ST	Strength reduction factor for tension ²	ϕ	-				0.75			
	Strength reduction factor for shear ²	ϕ	-				0.65			
		N _{sa}	lb	-	10,645	16,950	25,090	34,630	45,430	72,685
ษั	Nominal strength as governed by steel		(kN)	-	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
557	strength	V _{sa}	lb (kN)	-	6,385 (28.4)	10,170 (45.2)	15,055 (67.0)	20,780 (92.4)	27,260 (121.3)	43,610 (194.0)
1 F 16 55	Reduction for seismic shear	Ohr.	(KIN)	-	(20.4)	(43.2)	0.70	(92.4)	(121.3)	(194.0)
ASTM F1554 Gr. 55	Strength reduction factor for tension ²	$\alpha_{V,seis}$ ϕ					0.75			
Ř	Strength reduction factor for shear ²	φ					0.65			
	on ongar reduction factor for officer	,	lb	_	17,740	28,250	41,815	57,715	75,715	121,135
Ö.	Nominal strength as governed by steel	N _{sa}	(kN)	-	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)	(538.8)
54 (strength	V _{sa}	lb	-	10,645	16,950	25,090	34,630	45,430	72,680
F15 105		V Sa	(kN)	-	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)	(323.3)
ASTM F1554 Gr. 105	Reduction for seismic shear	$lpha_{V,seis}$	-				0.70			
AS	Strength reduction factor for tension ²	ϕ	-				0.75			
	Strength reduction factor for shear ²	φ	-				0.65	T		
>		N _{sa}	lb	7,750	14,190	22,600	28,435	39,245	51,485	-
ر د	Nominal strength as governed by steel strength		(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)	-
593, lles	Suengui	Vsa	lb (kN)	4,650 (20.7)	8,515 (37.9)	13,560 (60.3)	17,060 (75.9)	23,545	30,890 (137.4)	-
ASTM F593, CW Stainless	Reduction for seismic shear	<i>α</i>	(KIV)	(20.7)	(37.9)	· · · · · ·	.70	(104.7)	(137.4)	-
STS	Strength reduction factor for tension ²	αv,seis	-				.65			-
∢	Strength reduction factor for shear ²	φ φ	-				.60			-
	Suchgui reduction factor for shedi	ψ	- Ib			0	-			55,240
₽. –	Nominal strength as governed by steel	N_{sa}	(kN)				-			(245.7)
33 G ss 1 ss	strength	17	lb				-			33,145
A19 Cla inle		V _{sa}	(kN)				-			(147.4)
Sta.	Reduction for seismic shear	αv,seis	-				-			0.60
ASTM A193 Gr. 8(M), Class 1 Stainless	Strength reduction factor for tension ²	φ	-				-			0.75
	Strength reduction factor for shear ²	φ	-				-	·		0.65

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf ¹Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b) or ACI

³¹⁸⁻¹⁴ Eq. (17.4.1.2) and Eq. (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.

2The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

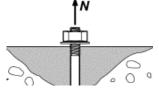
Fractional Reinforcing Bars

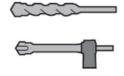
Steel Strength

TABLE 5—STEEL DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS

DEGLO	NUNEORMATION	0	ll-sid-s			Nomin	al Reinforci	ng bar size	(Rebar)		
DESIG	IN INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
Mamin	al bar diameter	d	in.	3/8	1/2	5/8	3/4	7/8	1	1.128	1.270
NOMIN	ai bai diametei	d	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.7)	(32.3)
Por off	ective cross-sectional area	A_{se}	in. ²	0.11	0.2	0.31	0.44	0.6	0.79	1.0	1.27
Dai eii	ective cross-sectional area	Ase	(mm ²)	(71)	(129)	(199)	(284)	(387)	(510)	(645)	(819)
		Nsa	lb	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200
LC CL	Nominal strength as governed by steel	IVsa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.9)	(266.9)	(339.0)
40	strength	V _{sa}	lb	3,960	7,200	11,160	15,840	21,600	28,440	36,000	45,720
STM A61 Grade 40		V sa	(kN)	(17.6)	(32.0)	(49.6)	(70.5)	(96.1)	(126.5)	(160.1)	(203.4)
ASTM A615 Grade 40	Reduction for seismic shear	$\alpha_{V,seis}$	-				0.	70			
4	Strength reduction factor ϕ for tension ²	φ	-				0.	65			
	Strength reduction factor ϕ for shear ²	φ	-				0.	60			
		.,	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600
10	Nominal strength as governed by steel	N _{sa}	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(451.9)
615	strength	1/	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960
STM A61 Grade 60		V _{sa}	(kN)	(23.5)	(42.7)	(66.2)	(93.9)	(128.1)	(168.7)	(213.5)	(271.2)
ASTM A615 Grade 60	Reduction for seismic shear	αv,seis	-				0.	70			
∢	Strength reduction factor ϕ for tension ²	φ	-				0.	65			
	Strength reduction factor ϕ for shear ²	φ	-				0.	60			
		.,	lb	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600
	Nominal strength as governed by steel	N _{sa}	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(452.0)
706	strength	1/	lb	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960
STM A Grade		V _{sa}	(kN)	(23.5)	(42.7)	(66.2)	(94.0)	(128.1)	(168.7)	(213.5)	(271.2)
ASTM A706 Grade 60	Reduction for seismic shear	αv,seis					0.	70			
⋖	Strength reduction factor ϕ for tension ²	φ					0.	75			
	Strength reduction factor ϕ for shear ²	φ					0.	65			

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N. For pound-inch units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf


¹ Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b) or ACI 318-14 Eq. (17.4.1.2) and Eq. (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.


2The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as

applicable, are met.

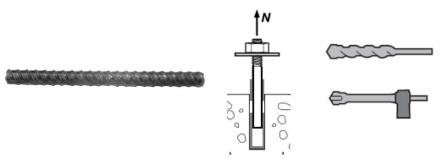
Fractional Threaded Rod and Reinforcing Bars

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 6—CONCRETE BREAKOUT DESIGN INFORMATION FOR FRACTIONAL THREADED ROD AND REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DEGICAL INFORMATION				ı	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	forcing bar	size			
DESIGN INFORMATION	Symbol	Units	³ / ₈ or #3	1/2 or #4	⁵ / ₈ or #5	3/ ₄ or #6	⁷ / ₈ or #7	1 or #8	#9	1¼ or #10
Effectiveness factor for cracked	k	in-lb					17			
concrete	K _{c,cr}	(SI)					(7.1)			
Effectiveness factor for	K _{c.uncr}	in-lb					24			
uncracked concrete	Nc,uncr	(SI)					(10)			
Minimum embedment	h	in.	2 ³ / ₈	23/4	3 ¹ / ₈	31/2	31/2	4	41/2	5
willimum embedment	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
Maximum embedment	h .	in.	71/2	10	12 ¹ / ₂	15	17 ¹ / ₂	20	221/2	25
	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
Minimum anchor spacing ³	6 .	in.	1 ⁷ / ₈	21/2	3 ¹ / ₈	33/4	43/8	5	5 ⁵ / ₈	61/4
willimum anchor spacing	S _{min}	(mm)	(48)	(64)	(79)	(95)	(111)	(127)	(143)	(159)
Minimum edge distance ³	Cmin	-	5d; or s	see Section	4.1.9 of thi	s report for	design with	reduced mi	nimum edg	e distances
Minimum concrete thickness	h _{min}	in. (mm)	-	- 1 ¹ / ₄ + 30)			h _{ef}	+ 2d ₀ ⁽⁴⁾		
Critical edge distance – splitting (for uncracked concrete)	Cac	-			Se	e Section 4	.1.10 of this	report.		
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-					0.65			
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-					0.70			


For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa. For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 7, Manufacturers Printed Installation Instructions (MPII).

²The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 of this report for spacing and maximum torque requirements.

 $^{^4}$ d_0 = hole diameter.

Fractional Reinforcing Bars

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

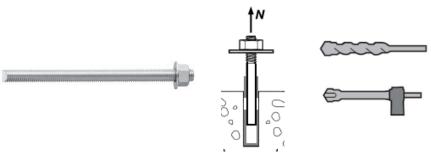
TABLE 7—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)^{1,2,3,4}

						No	minal reinf	orcing bar	size		
DESIGN	INFORMATION	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10
			in.	2 ³ / ₈	23/4	31/8	31/2	31/2	4	41/2	5
Minimur	n embedment	h _{ef,min}	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(114)	(127)
			in.	71/2	10	12 ¹ / ₂	15	171/2	20	221/2	25
Maximu	m embedment	h _{ef,max}	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(572)	(635)
	Characteristic bond		psi	595	595	595	595	595	565	535	510
o)	strength in cracked concrete	T _{k,cr}	(MPa)	(4.1)	(4.1)	(4.1)	(4.1)	(4.1)	(3.9)	(3.7)	(3.5)
ncret	Characteristic bond		psi	1,590	1,570	1,505	1,455	1,405	1,365	1,335	1,310
Dry concrete	strength in uncracked concrete	T _{k,uncr}	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.4)	(9.2)	(9.0)
	Anchor category	-	1			1			2	2	
	Strength reduction factor	$\phi_{ m d}$	1		0.	65			0.	55	
e	Characteristic bond		psi	595	595	595	595	595	560	520	475
Water saturated concrete	strength in cracked concrete	Tk,cr	(MPa)	(4.1)	(4.1)	(4.1)	(4.1)	(4.1)	(3.9)	(3.6)	(3.3)
ted or	Characteristic bond		psi	1,590	1,570	1,505	1,455	1,405	1,355	1,295	1,230
atural	strength in uncracked concrete	Tk,uncr	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.3)	(8.9)	(8.5)
ater s	Anchor category	-	-		2				3		
×	Strength reduction factor	φws	-		0.55				0.45		
	Characteristic bond		psi	565	560	560	540	515	475	440	400
Water-filled hole and underwater application	strength in cracked concrete	Tk,cr	(MPa)	(3.9)	(3.9)	(3.9)	(3.7)	(3.6)	(3.3)	(3.0)	(2.8)
l hole applic	Characteristic bond		psi	1,510	1,475	1,415	1,325	1,220	1,145	1,095	1,035
Water-filled hole and inderwater applicatior	strength in uncracked concrete	Tk,uncr	(MPa)	(10.4)	(10.2)	(9.8)	(9.1)	(8.4)	(7.9)	(7.5)	(7.1)
<i>Nate</i> nderv	Anchor category	-	-					3			
7 5	Strength reduction factor	Фwf Фuw	-				0	.45			

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination

report for bond strength determination.


²Bond strength values are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, band strengths may be increased 40 percent.

bond strengths may be increased 40 percent.

3 Values are for the following temperature range: maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by α_{N,seis} = 1.00.

Fractional Threaded Rod

Bond Strength

Carbide Bit or Hilti **Hollow Carbide Bit**

TABLE 8—BOND STRENGTH DESIGN INFORMATION FOR FRACTIONAL THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1.2.3.4

						Nomin	al rod diame	ter (in.)	,	
DESIGN	INFORMATION	Symbol	Units	³ / ₈	1/2	⁵ / ₈	3/4	⁷ / ₈	1	1 ¹ / ₄
Minimum	n embedment	h _{ef,min}	in.	2 ³ / ₈	23/4	31/8	31/2	31/2	4	5
wiiiiiiiiiiiiiiii	rembedment	l let,min	(mm)	(60)	(70)	(79)	(89)	(89)	(102)	(127)
Maximur	n embedment	h _{ef,max}	in.	71/2	10	12 ¹ / ₂	15	17 ¹ / ₂	20	25
- IVIGAIITIGI	Temboument	rier,max	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
	Characteristic bond		psi	770	740	740	700	645	600	510
4)	strength in cracked concrete	T _{k,cr}	(MPa)	(5.3)	(5.1)	(5.1)	(4.8)	(4.4)	(4.1)	(3.5)
Dry concrete	Characteristic bond strength in uncracked		psi	1,590	1,570	1,505	1,455	1,405	1,365	1,310
oy co	concrete	Tk,uncr	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.4)	(9.0)
	Anchor category	-	-			1			2	
	Strength reduction factor	фа	-		0.	65			0.55	
4)	Characteristic bond		psi	770	740	740	700	645	595	475
ncrete	strength in cracked concrete	Tk,cr	(MPa)	(5.3)	(5.1)	(5.1)	(4.8)	(4.4)	(4.1)	(3.3)
00 p	Characteristic bond		psi	1,590	1,570	1,505	1,455	1,405	1,355	1,230
Water saturated concrete	strength in uncracked concrete	Tk,uncr	(MPa)	(11.0)	(10.8)	(10.4)	(10.0)	(9.7)	(9.3)	(8.5)
ter s	Anchor category	-	-	2	2			3		
Wa	Strength reduction factor	φws	-	0.8	55			0.45		
	Characteristic bond		psi	730	695	695	635	555	500	400
e e	strength in cracked concrete	Tk,cr	(MPa)	(5.0)	(4.8)	(4.8)	(4.4)	(3.8)	(3.4)	(2.8)
Water-filled hole and underwater	Characteristic bond		psi	1,510	1,475	1,415	1,325	1,220	1,145	1,035
er-filk unde	strength in uncracked concrete	Tk,uncr	(MPa)	(10.4)	(10.2)	(9.8)	(9.1)	(8.4)	(7.9)	(7.1)
Wat and	Anchor category	-	-				3			
	Strength reduction factor	Фwf Фuw	-				0.45			

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (fc / 2,500)01 [For SI: (fc / 17.2)01]. See Section 4.1.4 of this report for bond strength determination.

²Bond strength values are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent.

³Values are for the following temperature range: maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C). Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.

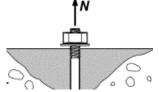
4For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by $\alpha_{N,seis}$ = 100.

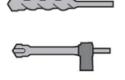
Metric Threaded Rod and EU Metric Reinforcing Bars

Steel Strength

TABLE 9—STEEL DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS

		_					Nomin	al rod dia	meter (mm	ı)¹		
DESIG	INFORMATION	Symbol	Units	8	10	12		16	20	24	27	30
			mm	8	10	12		16	20	24	27	30
Rod o	utside diameter	d	(in.)	(0.31)	(0.39)	(0.47	·) (0	.63)	(0.79)	(0.94)	(1.06)	(1.18)
D-1-	ff - 4i	4	mm ²	36.6	58.0	84.3	3 1	57	245	353	459	561
Rod e	ffective cross-sectional area	A _{se}	(in. ²)	(0.057)	(0.090)	(0.13	1) (0.	243)	(0.380)	(0.547)	(0.711)	(0.870)
		Α/	kN	18.5	29.0	42.0	7	8.5	122.5	176.5	229.5	280.5
	Nominal strength as governed by steel	N _{sa}	(lb)	(4,114)	(6,519)	(9,47	6) (17	,647)	(27,539)	(39,679)	(51,594)	(63,059)
8-1	strength	V _{sa}	kN	11.0	17.4	25.5	5 4	7.0	73.5	106.0	137.5	168.5
ISO 898-1 Class 5.8		v sa	(lb)	(2,480)	(3,912)	(5,68	5) (10	,588)	(16,523)	(23,807)	(30,956)	(37,835)
S 5	Reduction for seismic shear	αv,seis	-					0.70	١			
	Strength reduction factor for tension ²	φ	-					0.65	i			
	Strength reduction factor for shear ²	φ	-					0.60	١			
		N _{sa}	kN	29.5	46.5	67.5	5 12	25.5	196.0	282.5	367.0	449.0
	Nominal strength as governed by steel	IVsa	(lb)	(6,582)	(10,431)	(15,16	(28	,236)	(44,063)	(63,486)	(82,550)	(100,894)
8-1	strength	V _{sa}	kN	17.6	27.8	40.5	5 7	5.5	117.5	169.5	220.5	269.5
SO 898-1 Class 8.8		V sa	(lb)	(3,949)	(6,250)	(9,09	7) (16	,942)	(26,438)	(38,092)	(49,530)	(60,537)
<u>8</u> 8	Reduction for seismic shear	$lpha_{V,seis}$	-					0.70	1			
	Strength reduction factor for tension ²	ϕ	-					0.65	i			
	Strength reduction factor for shear ²	ϕ	-					0.60	١			
		N _{sa}	kN	25.6	40.6	59.0	10	09.9	171.5	247.1	183.1	223.8
1SS	Nominal strength as governed by steel	IVsa	(lb)	(5,760)	(9,127)	(13,26	66) (24	,706)	(38,555)	(55,550)	(41,172)	(50,321)
Cla less	strength	V _{sa}	kN	15.4	24.4	35.4	6	5.9	102.9	148.3	109.9	134.3
506-1 Cla Stainless³		v sa	(lb)	(3,456)	(5,485)	(7,96	0) (14	,824)	(23,133)	(33,330)	(24,703)	(30,192)
ISO 3506-1 Class A4 Stainless ³	Reduction for seismic shear	αv,seis	-					0.70	1			
<u>s</u>	Strength reduction factor for tension ²	ϕ	-					0.65	i			
	Strength reduction factor for shear ²	φ	-					0.60	1			
DESIG	SN INFORMATION	Symbol	Units				Re	inforcing	bar size			
		Cymbol	Omico	8	10	12	14	16	20	25	28	32
Nomin	nal bar diameter	d	mm	8.0	10.0	12.0	14.0	16.0	20.	.0 25.0	28.0	32.0
			(in.)	(0.315)	(0.394)	(0.472)	(0.551)	(0.630	0.78	87) (0.984	(1.102)	(1.260)
Bar ef	fective cross-sectional area	Ase	mm ²	50.3	78.5	113.1	153.9	201.1	1 314	.2 490.9	615.8	804.2
		1 100	(in.²)	(0.078)	(0.122)	(0.175)	(0.239)	(0.312	<u> </u>	<u> </u>	, , ,	(1.247)
0	0		kN	27.5	43.0	62.0	84.5	110.5				442.5
05/0	Nominal strength as governed by steel strength Reduction for seismic shear Strength reduction factor for tension ²		(lb)	(6,215)	(9,711)	(13,984)	(19,034)	(24,86				(99,441)
t 55(strength		kN	16.5	26.0	37.5	51.0	66.5				265.5
BS		V _{sa}	(lb)	(3,729)	(5,827)	(8,390)	(11,420)	(14,91	, , ,	(36,41	6) (45,681)	(59,665)
488	Reduction for seismic shear	αv,seis	-					0.70	1			
	Strength reduction factor for tension ²	φ	-					0.65				
	Strength reduction factor for shear ²	ϕ	-					0.60	1			


For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


¹Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b) or ACI 318-14 Eq. (17.4.1.2) and Eq. (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.

²The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable,

³A4-70 Stainless (M8- M24); A4-502 Stainless (M27- M30).

Metric Threaded Rod and EU Metric Reinforcing Bars

Concrete Breakout Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 10—CONCRETE BREAKOUT DESIGN INFORMATION FOR METRIC THREADED ROD AND EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)¹

DEGION INFORMATION	o	11"				Nomina	l rod diar	neter (mm			
DESIGN INFORMATION	Symbol	Units	8	10	12	1	6	20	24	27	30
Effectiveness factor for cracked	1,	SI					7.1				
concrete	K _{c,cr}	(in-lb)					(17)				
Effectiveness factor for	K c,uncr	SI					10				
uncracked concrete	Nc,uncr	(in-lb)					(24)			,	
Minimum anchor spacing ³	S _{min}	mm	40	50	60	8	0	100	120	135	150
	Sililii	(in.)	(1.6)	(2.0)	(2.4)	(3		(3.9)	(4.7)	(5.3)	(5.9)
Minimum edge distance ³	Cmin	mm	40	50	60		0	100	120	135	150
	G111111	(in.)	(1.6)	(2.0)	(2.4)	(3	.2)	(3.9)	(4.7)	(5.3)	(5.9)
Minimum concrete thickness	h _{min}	mm (in.)		+ 30 + 1 ¹ / ₄)				h _{ef} + 2	$d_o^{(4)}$		
Critical edge distance – splitting (for uncracked concrete)	Cac	-			;	See Section	on 4.1.10	of this repo	rt.		
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-					0.65				
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-		0.70							
				Reinforcing bar size							
DESIGN INFORMATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Effectiveness factor for cracked concrete	K _{c,cr}	SI (in-lb)		•	1		7.1 (17)	1	•	1	1
Effectiveness factor for	1.	SI					10				
uncracked concrete	k _{c,uncr}	(in-lb)					(24)				
Minimum bar spacing ³		mm	40	50	60	70	80	100	125	140	160
	Smin	(in.)	(1.6)	(2.0)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Minimum edge distance ³	C _{min}	_	40	50	60	70	80	100	125	140	160
	Omin		(1.6)	(2.0)	(2.4)	(2.8)	(3.1)	(3.9)	(4.9)	(5.5)	(6.3)
Minimum concrete thickness	h _{min}	mm (in.)	h _{ef} + (h _{ef} +					h _{ef} + 2d	o ⁽⁴⁾		
Critical edge distance – splitting (for uncracked concrete)	Cac	-	(Her	. 747	See Section 4.1.10 of this report.						
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-					0.65				
Strength reduction factor for shear, concrete failure modes, Condition B (supplemental reinforcement not present) ²	φ	-			0.70						

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Additional setting information is described in Figure 7, Manufacturers Printed Installation Instructions (MPII).

²The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

³For installations with 1³/₄-inch edge distance, refer to Section 4.1.9 for spacing and maximum torque requirements.

 $^{^{4}}$ d_{0} = hole diameter.

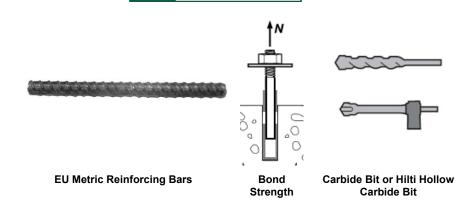
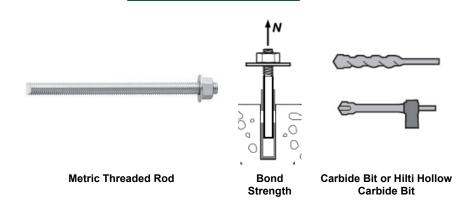


TABLE 11—BOND STRENGTH DESIGN INFORMATION FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)^{1,2,3,4}

DEGIGNI	INFORMATION	0	11-24-				Rein	forcing ba	size			
DESIGN	INFORMATION	Symbol	Units	8	10	12	14	16	20	25	28	32
Minimum	ı embedment	6	mm	60	60	70	75	80	90	100	112	128
Minimum	rembedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.0)	(3.1)	(3.5)	(3.9)	(4.4)	(5.0)
Maximum	n embedment	h	mm	160	200	240	280	320	400	500	560	640
Maximum	n embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(11.0)	(12.6)	(15.7)	(19.7)	(22.0)	(25.2)
	Characteristic bond strength in cracked		MPa	4.1	4.1	4.1	4.1	4.1	4.1	4.0	3.7	3.5
4)	concrete	Tk,cr	(psi)	(595)	(595)	(595)	(595)	(595)	(595)	(580)	(535)	(510)
Dry concrete	Characteristic bond strength in uncracked		MPa	11.0	11.0	11.0	10.7	10.4	9.9	9.5	9.2	9.0
y cor	concrete	Tk,uncr	(psi)	(1590)	(1590)	(1590)	(1545)	(1505)	(1435)	(1375)	(1340)	(1310)
۵	Anchor category	-	-				1				2	
	Strength reduction factor	Фа	-			0	.65				0.55	
Φ	Characteristic bond		MPa	4.1	4.1	4.1	4.1	4.1	4.1	4.0	3.6	3.3
Water saturated concrete	strength in cracked concrete	$ au_{k,cr}$	(psi)	(595)	(595)	(595)	(595)	(595)	(595)	(580)	(520)	(475)
oo pə	Characteristic bond		MPa	11.0	11.0	11.0	10.7	10.4	9.9	9.5	9.0	8.5
aturat	strength in uncracked concrete	Tk,uncr	(psi)	(1590)	(1590)	(1590)	(1545)	(1505)	(1435)	(1375)	(1300)	(1230)
ter s	Anchor category	-	-		2				3			
Ma	Strength reduction factor	фws	-		0.55				0.4	5		
	Characteristic bond		MPa	3.9	3.9	3.9	3.9	3.8	3.7	3.4	3.0	2.8
e =	strength in cracked concrete	Tk,cr	(psi)	(565)	(565)	(565)	(565)	(550)	(535)	(495)	(435)	(405)
ed hol rwate	Characteristic bond		MPa	10.4	10.4	10.3	10.1	9.7	8.9	8.1	7.6	7.1
Water-filled hole and underwater	strength in uncracked concrete	Tk,uncr	(psi)	(1510)	(1510)	(1495)	(1460)	(1400)	(1290)	(1175)	(1100)	(1030)
Wate	Anchor category	-	-					3		I	l	
	Strength reduction factor	фwf Фиw	-					0.45				

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.


For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

determination.

2Bond strength values are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent.

³Values are for the following temperature range: maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time. ⁴For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by α_{N,seis} = 1.00.

TABLE 12—BOND STRENGTH DESIGN INFORMATION FOR METRIC THREADED ROD IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)^{1,2,3,4}

	WEODMATION					N	ominal rod	diameter (mr	n)	_	
DESIGN	INFORMATION	Symbol	Units	8	10	12	16	20	24	27	30
N 45 5	and a decreat		mm	60	60	70	80	90	96	108	120
iviinimum	embedment	h _{ef,min}	(in.)	(2.4)	(2.4)	(2.8)	(3.1)	(3.5)	(3.8)	(4.3)	(4.7)
			mm	160	200	240	320	400	480	540	600
Maximun	n embedment	h _{ef,max}	(in.)	(6.3)	(7.9)	(9.4)	(12.6)	(15.7)	(18.9)	(21.3)	(23.6)
	Characteristic bond		MPa	5.3	5.3	5.3	5.1	4.7	4.2	4.0	3.7
_	strength in cracked concrete	Tk,cr	(psi)	(770)	(770)	(770)	(740)	(680)	(610)	(580)	(535)
Dry concrete	Characteristic bond		MPa	11.0	11.0	11.0	10.4	9.9	9.6	9.3	9.1
y con	strength in uncracked concrete	Tk,uncr	(psi)	(1590)	(1590)	(1590)	(1505)	(1435)	(1385)	(1355)	(1320)
ŏ	Anchor category	-	-			1				2	
	Strength reduction factor	фа	-			0.65				0.55	
Φ	Characteristic bond		MPa	5.3	5.3	5.3	5.1	4.7	4.2	3.9	3.5
ncret	strength in cracked concrete	Tk,cr	(psi)	(770)	(770)	(770)	(740)	(685)	(615)	(570)	(510)
Water saturated concrete	Characteristic bond strength in uncracked		MPa	11.0	11.0	11.0	10.4	9.9	9.6	9.1	8.6
turate	concrete	$T_{k,uncr}$	(psi)	(1590)	(1590)	(1590)	(1505)	(1435)	(1385)	(1320)	(1255)
er sa	Anchor category	-	-		2				3		
Wat	Strength reduction factor	φws	-		0.55				0.45		
	Characteristic bond		MPa	5.0	5.0	5.0	4.8	4.2	3.7	3.3	3.0
Θ =	strength in cracked concrete	Tk,cr	(psi)	(730)	(730)	(730)	(695)	(610)	(535)	(480)	(435)
Water-filled hole and underwater	Characteristic bond		MPa	10.4	10.4	10.4	9.8	8.9	8.2	7.8	7.4
er-fille unde	strength in uncracked concrete	T _{k,uncr}	(psi)	(1510)	(1510)	(1510)	(1415)	(1290)	(1190)	(1130)	(1075)
Wate	Anchor category	-	-				;	3			
	Strength reduction factor	Фwf Фиw	-				0.	45			

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Bond strength values correspond to concrete compressive strength f_c = 2,500 psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Bond strength values are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent.

³Values are for the following temperature range: maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time

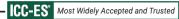
⁴For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by α_{N.seis} = 1.00.

Canadian Reinforcing Bars

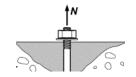
Steel Strength

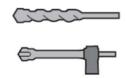
TABLE 13—STEEL DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS¹

DEC	ICN INFORMATION	Cumbal	l leite			Bar size		
DES	IGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
Nam	in all han diamantan	-4	mm	11.3	16.0	19.5	25.2	29.9
NOII	ninal bar diameter	d	(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
D	effective and a stimul and	4	mm ²	100.3	201.1	298.6	498.8	702.2
ваг	effective cross-sectional area	Ase	(in.²)	(0.155)	(0.312)	(0.463)	(0.773)	(1.088)
			kN	54.0	108.5	161.5	270.0	380.0
	Nominal strength as governed by steel	N _{sa}	(lb)	(12,175)	(24,408)	(36,255)	(60,548)	(85,239)
G30	strength		kN	32.5	65.0	97.0	161.5	227.5
A G		V _{sa}	(lb)	(7,305)	(14,645)	(21,753)	(36,329)	(51,144)
CSA	Reduction for seismic shear	αv,seis	-			0.70		
	Strength reduction factor for tension ²	φ	-			0.65		
	Strength reduction factor for shear ²	φ	-			0.60		


For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi


¹Values provided for common rod material types are based on specified strengths and calculated in accordance with ACI 318-19 Eq. (17.6.1.2) and Eq. (17.7.1.2b) or ACI 318-14 Eq. (17.4.1.2) and Eq. (17.5.1.2b), as applicable. Nuts and washers must be appropriate for the rod.


²The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14

17.3.3, as applicable, are met.

Canadian Reinforcing Bars

Concrete Breakout Strength

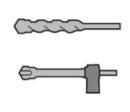
Carbide Bit or Hilti Hollow Carbide Bit

TABLE 14—CONCRETE BREAKOUT DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)1

DECICN INFORMATION	Ob.al	Heite			Bar size			
DESIGN INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M	
Effectiveness factor for cracked concrete	l.	SI			7.1			
Effectiveness factor for cracked concrete	K c,cr	(in-lb)			(17)			
Effectiveness factor for uncracked concrete	l.	SI			10			
Effectiveness factor for uncracked concrete	K _{c,uncr}	(in-lb)			(24)			
Minimum embedment	b	mm	60	80	90	101	120	
Minimum embeament	h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)	
Maximum and administ	1 -	mm	226	320	390	504	598	
Maximum embedment	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)	
Minimum han an air a3	_	mm	57	80	98	126	150	
Minimum bar spacing ³	Smin	(in.)	(2.2)	(3.1)	(3.8)	(5.0)	(5.9)	
Minimum adam diatawa 3	_	mm	5d; or see Sed	ction 4.1.9 of this	report for design	gn with reduced	minimum edge	
Minimum edge distance ³	C _{min}	(in.)			distances		_	
Minimum concrete thickness	h	mm	h _{ef} + 30		h _{ef} +	2 d (4)		
Minimum concrete thickness	h _{min}	(in.)	$(h_{ef} + 1^1/_4)$		Π _{ef} +	2 0 017		
Critical edge distance – splitting		_		Soo Soo	tion 4.1.10 of th	is roport		
(for uncracked concrete)	Cac	-			1011 4.1.10 01 11	пь тероп.		
Strength reduction factor for tension, concrete failure modes, Condition B (supplemental	φ	_			0.65			
reinforcement not present) ²	φ	_		0.00				
Strength reduction factor for shear, concrete								
failure modes, Condition B (supplemental reinforcement not present) ²	φ	-		0.70				

For **SI**: 1 inch \equiv 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

¹Additional setting information is described in Figure 7, Manufacturers Printed Installation Instructions (MPII).


² The strength reduction factor applies when the load combinations from the IBC or ACI 318 are used and the requirements of ACI 318-19 17.5.3 or ACI 318-14 17.3.3, as applicable, are met.

For installations with 1%-inch edge distance, refer to Section 4.1.9 of this report for spacing and maximum torque requirements.

 $^{^4}$ d_0 = hole diameter.

Canadian Reinforcing Bars

Bond Strength

Carbide Bit or Hilti Hollow Carbide Bit

TABLE 15—BOND STRENGTH DESIGN INFORMATION FOR CANADIAN METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE DRILL BIT)^{1,2,3,4}

DESIGN	INFORMATION	Symphol	Unite			Bar size		
DESIGN	INFORMATION	Symbol	Units	10 M	15 M	20 M	25 M	30 M
4:	h do A		mm	60	80	90	101	120
viinimum	n embedment	h _{ef,min}	(in.)	(2.4)	(3.1)	(3.5)	(4.0)	(4.7)
4			mm	226	320	390	504	598
/laximun	n embedment	h _{ef,max}	(in.)	(8.9)	(12.6)	(15.4)	(19.8)	(23.5)
	Characteristic bond		MPa	4.1	4.1	4.1	3.9	3.6
	strength in cracked concrete	T _{k,cr}	(psi)	(595)	(595)	(595)	(565)	(520)
Dry concrete	Characteristic bond		MPa	11.0	10.4	10.0	9.5	9.1
y cor	strength in uncracked concrete	Tk,uncr	(psi)	(1,590)	(1,505)	(1,445)	(1,375)	(1,320)
Ò	Anchor category	-	-		1			2
	Strength reduction factor	фа	-		0.65		0.	55
ę	Characteristic bond strength in cracked		MPa	4.1	4.1	4.1	3.9	3.4
ncre	concrete	Tk,cr	(psi)	(595)	(595)	(595)	(565)	(495)
ed oc	Characteristic bond strength in uncracked		MPa	11.0	10.4	10.0	9.5	8.7
ıturat	concrete	Tk,uncr	(psi)	(1,590)	(1,505)	(1,445)	(1,375)	(1,255)
Water saturated concrete	Anchor category	-	-	2			3	
Wa	Strength reduction factor	φws	-	0.55		(0.45	
	Characteristic bond		MPa	3.9	3.9	3.7	3.3	2.9
and	strength in cracked concrete	Tk,cr	(psi)	(565)	(570)	(540)	(480)	(425)
Water-filled hole and underwater	Characteristic bond strength in uncracked		MPa	10.4	9.8	9.1	8.1	7.4
er-filled hole underwater	concrete	Tk,uncr	(psi)	(1,510)	(1,415)	(1,315)	(1,170)	(1,070)
/ater- ur	Anchor category	-	1			3		
\$	Strength reduction factor	Фwf Фuw	-			0.45		

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa.

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹Bond strength values correspond to concrete compressive strength $f_c = 2,500$ psi (17.2 MPa). For concrete compressive strength, f_c , between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of $(f_c / 2,500)^{0.1}$ [For SI: $(f_c / 17.2)^{0.1}$]. See Section 4.1.4 of this report for bond strength determination.

²Bond strength values are for sustained loads including dead and live loads. For load combinations consisting of short-term loads only such as wind and seismic, bond strengths may be increased 40 percent.

³Values are for the following temperature range: maximum short term temperature = 130°F (55°C), maximum long term temperature = 110°F (43°C). Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

⁴For structures assigned to Seismic Design Categories C, D, E or F, bond strength values must be multiplied by $\alpha_{N,sels}$ = 1.00.

TABLE 16—DEVELOPMENT LENGTH FOR U.S. CUSTOMARY UNIT REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE BIT) 1,2,5,6

			-								
		Criteria Section of Reference Standard		Bar Size							
DESIGN INFORMATION Sys	Symbol		Units	#3	#4	#5	#6	#7	#8	#9	#10
Nominal reinforcing bar	dь	ASTM A615/A706	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.128	1.270
diameter	u _b	7.611117.616/7.1106	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.7)	(32.3)
		ASTM A615/A706	in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.00	1.27
Nominal bar area	A_b		(mm²)	(71)	(129)	(199)	(284)	(387)	(510)	(645)	(819)
Development length for $f_y = 60$		ACI 318-19 25.4.2.4	in.	12.0	14.4	18.0	21.6	31.5	36.0	40.6	45.7
ksi and f'_c = 2,500 psi (normal weight concrete) ^{3,4}	la	ACI 318-14 25.4.2.3	(mm)	(305)	(366)	(457)	(549)	(800)	(914)	(1031)	(1161)
Development length for $f_y = 60$		ACI 318-19 25.4.2.4	in.	12.0	12.0	14.2	17.1	24.9	28.5	32.1	36.1
ksi and f'_c = 4,000 psi (normal weight concrete) ^{3,4}	1	ACI 318-14 25.4.2.3	(mm)	(305)	(305)	(361)	(434)	(633)	(723)	(815)	(918)

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 Mpa

For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 Mpa = 145.0 psi

TABLE 17—DEVELOPMENT LENGTH FOR EU METRIC REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE BIT) 1.2.5,6

·		Criteria Section of		Bar Size						
DESIGN INFORMATION	Symbol	Reference Standard	Units	8	10	12	16	20	25	32
Nominal reinforcing bar	dь	BS4449: 2005	mm	8	10	12	16	20	25	32
diameter	G _D	B34449. 2003	(in.)	(0.315)	(0.394)	(0.472)	(0.630)	(0.787)	(0.984)	(1.260)
N	4	BS 4449: 2005	mm ²	50.3	78.5	113.1	201.1	314.2	490.9	804.2
Nominal bar area	A_b	BS 4449. 2005	(in²)	(80.0)	(0.12)	(0.18)	(0.31)	(0.49)	(0.76)	(1.25)
Development length for $f_V = 72.5$ ksi and $f'_G = 2,500$,	ACI 318-19 25.4.2.4 ⁷	mm	305	348	417	556	871	1087	1392
psi (normal weight concrete) ^{3,4}	I _d	ACI 318-14 25.4.2.3	(in.)	(12.0)	(13.7)	(16.4)	(21.9)	(34.3)	(42.8)	(54.8)
Development length for $F_V = 72.5$ ksi and $f'_c = 4,000$		ACI 318-19 25.4.2.4 ⁷	mm	305	305	330	439	688	859	1100
psi (normal weight concrete) ^{3,4}	I _d	ACI 318-14 25.4.2.3	(in.)	(12.0)	(12.0)	(13.0)	(17.3)	(27.1)	(33.8)	(43.3)

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 Mpa

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318 (-19 or -14) Chapter 18 and Section 4.2.4 of this report. The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F.

³For all-lightweight concrete, increase development length by 33% unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 are met to permit λ > 0.75. For sand-lightweight concrete, increase development length by 18% unless the provisions of ACI 318-19 25.4.2.5 or ACI 318-14 25.4.2.4 are met to permit λ > 0.85

 $^{^4\}left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5, \; \psi_t = 1.0, \; \psi_e = 1.0, \; \psi_s = 0.8 \; \text{for} \; d_b \le \#6, 1.0 \; \text{for} \; d_b > \#6$

⁵Calculations may be performed for other steel grades per ACI 318 (-19 or -14) Chapter 25.

⁶Minimum development length shall not be less than 12 in (305 mm) per ACI 318 (-19 or -14) Section 25.4.2.1.

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B).

²Development lengths in SDC C through F must comply with ACI 318 (-19 or -14) Chapter 18 and Section 4.2.4 of this report. The value of f_c used to calculate development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F.

³For all-lightweight concrete, increase development length by 33% unless the provisions of ACI 318-19 25.4.2.5 (ACI 318-14 25.4.2.4) are met to permit λ > 0.75. For sand-lightweight concrete, increase development length by 18% unless the provisions of ACI 318-19 25.4.2.5 (ACI 318-14 25.4.2.4) are met to permit λ > 0.85.

 $^{4\}left(\frac{c_b + K_{tr}}{d_b}\right) = 2.5$, $\psi_t = 1.0$, $\psi_e = 1.0$, $\psi_s = 0.8$ for $d_b < 20$ mm, 1.0 for $d_b \ge 20$ mm

⁵Calculations may be performed for other steel grades per ACI 318 (-19 or -14) Chapter 25.

⁶Minimum development length shall not be less than 12 in (305 mm) per ACI 318 (-19 or -14) Section 25.4.2.1.

⁷ I_d must be increased by 9.5% to account for ψ_g in ACI 318-19 25.4.2.4. ψ_g has been interpolated from Table 25.4.2.5 of ACI 318-19 for f_y = 72.5 ksi.

TABLE 18—DEVELOPMENT LENGTH FOR CANADIAN REINFORCING BARS IN HOLES DRILLED WITH A HAMMER DRILL AND CARBIDE BIT (OR HILTI HOLLOW CARBIDE BIT) 1,2,5,6

		Criteria Section of				Bar Size		
DESIGN INFORMATION	MATION Symbol Reference Standard		Units	10M	15M	20M	25M	30M
Nominal reinforcing bar diameter d	-4	CAN/CSA-G30.18 Gr.400	mm	11.3	16.0	19.5	25.2	29.9
	аь		(in.)	(0.445)	(0.630)	(0.768)	(0.992)	(1.177)
Nominal bar area	4	CAN/CSA-G30.18 Gr.400	mm ²	100.3	201.1	298.6	498.8	702.2
Nominal dar area	Аь		(in²)	(0.16)	(0.31)	(0.46)	(0.77)	(1.09)
Development length for		ACI 318-19 25.4.2.4	mm	315	445	678	876	1,041
f_y = 58 ksi and f'_c = 2,500 psi (normal weight concrete) ^{3,4}	= 58 ksi and f'_c = 2,500 psi	ACI 318-14 25.4.2.3	(in.)	(12.4)	(17.5)	(26.7)	(34.5)	(41.0)
Development length for	,	ACI 318-19 25.4.2.4	mm	305	353	536	693	823
F_y = 58 ksi and f'_c = 4,000 psi (normal weight concrete) ^{3,4}	I _d	ACI 318-14 25.4.2.3	(in.)	(12.0)	(13.9)	(21.1)	(27.3)	(32.4)

For **SI**: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 Mpa

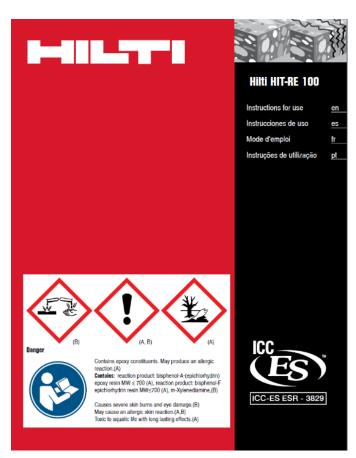
For **pound-inch** units: 1 mm = 0.03937 inches, 1 N = 0.2248 lbf, 1 Mpa = 145.0 psi

⁶ Minimum development length shall not be less than 12 in (305 mm) per ACI 318 (-19 or -14) Section 25.4.2.1.

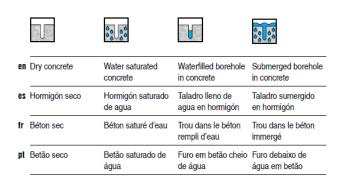
HILTI DISPENSER

HILTI TE-CD OR TE-YD HOLLOW CARBIDE DRILL BIT

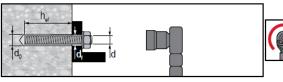
ANCHORING ELEMENTS


FIGURE 6—HILTI HIT-RE 100 ANCHORING SYSTEM

¹Development lengths valid for static, wind, and earthquake loads (SDC A and B). ²Development lengths in SDC C through F must comply with ACI 318 (-19 or -14) Chapter 18 and Section 4.2.4 of this report. The value of f_c used to calculate


development lengths shall not exceed 2,500 psi for post-installed reinforcing bar applications in SDCs C, D, E, and F. ³For all-lightweight concrete, increase development length by 33% unless the provisions of ACI 318-19 25.4.2.5 (ACI 318-14 25.4.2.4) are met to permit λ > 0.75. For sand-lightweight concrete, increase development length by 17.6% unless the provisions of ACI 318-19 25.4.2.5 (ACI 318-14 25.4.2.4) are met to permit λ >

 $^{4\}left(\frac{c_b + k_{tr}}{d_b}\right)$ = 2.5, ψ_t=1.0, ψ_e=1.0, ψ_s=0.8 for d_b < 20 mm,1.0 for d_b ≥ 20 mm ⁵Calculations may be performed for other steel grades per ACI 318 (-19 or -14) Chapter 25.




	~~~		
en	Hammer drilling	Hollow drill bit	_
es	Taladrado con martillo	Taladro con broca hueca y aspiración	_
ir	Perçage avec percussion	Foret creux	_
pt	Perfurar de martelo	Broca de coroa oca	_
	<b>Ö</b> t _{work}	t _{cure, ini}	t _{cure, full}
en	Working time	Initial curing time	Curing time
es	Tiempo de tratamiento	Resistencia de montaje	Tiempo de fragu
ir	Temps de manipulation	Stabilité du montage	Temps de durcis
	Tempo de trabalho	Resistência de montagem	Tempo de cura f





# HIT-V (-R, -F, -HCR) / HAS-E (-B) / HAS-R



HAS / HIT-V

Ø d [inch]	Ø d₀ [inch]	h _{ef} [inch]	Ø d _f [inch]	T _{max} [ft-lb]	T _{max} [Nm]
3/8	⁷ / ₁₆	23/871/2	7/16	15	20
1/2	9/16	23/410	9/16	30	41
5/8	3/4	31/8121/2	11/16	60	81
3/4	7/8	31/215	13/16	100	136
7/8	1	31/2171/2	15/16	125	169
1	1 1/8	420	11/8	150	203
11/4	13/8	525	13/8	200	271

### HIT-V

0 <u>[</u> 2222222]	Ø d₀	h _{ef}	Ø d _f	T _{max}
Ø d [mm]	[mm]	[mm]	[mm]	[Nm]
M8	10	60160	9	10
M10	12	60200	12	20
M12	14	70240	14	40
M16	18	80320	18	80
M20	22	90400	22	150
M24	28	96480	26	200
M27	30	108540	30	270
M30	35	120600	33	300

1 inch = 25.4 mm

10 M 15 M

20 M

25 M



US Rebar		
727772777277	Ø d₀	
d	[inch]	[inch]
#3	1/2	2 3/822 1/2
#4	5/8	23/430
#5	3/4	3 1/837 1/2
#6	7/8	31/215
#0	1	1545
#7	1	3 1/217 1/2
# /	1 1/8	17 1/252 1/2
#8	1 1/8	420
#0	1 1/4	2060
#9	13/8	4 1/267 1/2
#10	1 1/2	575
# 11	1 ³ / ₄	5 1/282 1/2

[inch] 9/16

3/4

1 1/4 (32 mm)

[mm] 70...678

80...960

90...1170

101...1512

TATATATATATA	Ø d ₀	h _{ef}
d	[inch]	[inch]
#3	1/2	23/8221/2
#4	5/8	2 ³ / ₄ 30
#5	3/4	3 1/837 1/2
#6	7/ ₈	3½15 1545
#7	1 1 1/8	3 ½17 ½ 17 ½52 ½
#8	1 ½ 1 ½ 1 ½	420 2060
#9	1 3/8	4 1/2 67 1/2
#10	1 1/2	575
# 11	1 ³ / ₄	5 1/282 1/2
Rebar		
(W/W/W/W/W/W/W/	O 4	4

30 M	1 1/2	1201794
EU Rebar		
ZZZZZZZ	Ø d₀ [mm]	h _{ef} [mm]
Ø d [mm]	Ø d₀ [mm]	Hef [HIIII]
8	12	60480
10	14	60600
12	16	70720
14	18	75840
16	20	80960
18	22	851080
20	25	901200
22	28	951320
24	32	961440
25	32	1001500
26	35	1041560
28	35	1121680
30	37	120 1800

			annapa Sanana		KHHHY[]3 VANADAAZ
	[°C]	[°F]	t _{work}	t _{oure, ini}	t _{oure, full}
U	5	41	21/2 h	≥18 h	≥72 h
2002	10	50	2h	≥12 h	≥48 h
0,000	15	59	1 ½ h	≥8 h	≥24 h
U	20	68	30 min	≥6 h	≥12 h
	30	86	20 min	≥4 h	≥8 h
	40	104	12 min	≥2 h	≥4 h

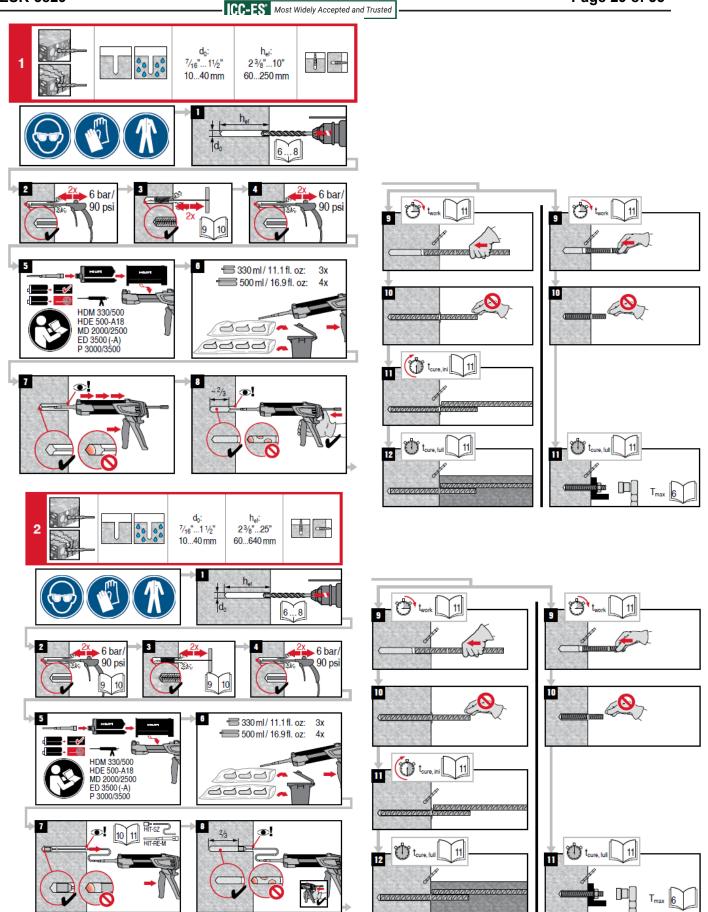
Rebar - hef ≥ 20d

~~~~				
	WWW.	h _{e1}	30 H	-
UDM UDE	≤ US #5	12 ½ 37 ½ [inch]	44.05 404.05	41 °F 104 °F
HDM, HDE, HIT-P 8000D	≤ EU 16mm	320 960 [mm]		5 °C 40 °C
1111-1 00000	≤ CAN 15M	320 960 [mm]	5 0 40 0	5 0 40 0
HDE.	≤ US #7	17 ½52 ½ [inch]	44 9E 104 9E	41 °F 104 °F
HIT-P 8000D	≤ EU 20mm	400 1200 [mm]	5°C 40°C	5 °C 40 °C
11111 00000	≤ CAN 20M	390 1170 [mm]	3 0 40 0	5 0 40 0
	≤ US #10	25 75 [inch]	44.05 104.05	41 °F 104 °F
HIT-P 8000D	≤ EU 32mm	640 1920 [mm]	5 °C 40 °C	5 °C 40 °C
	≤ CAN 30M	598 1794 [mm]	3 0 40 0	5 0 40 0
6				


~~ ~	DENDONA.	h _{ef}	23	
LIDAA LIDE	≤ US #5	12 ½ 37 ½ [inch]	4485 40485	44.05 404.05
HDM, HDE, HIT-P 8000D	≤ EU 16mm	320 960 [mm]	41°F 104 °F 5 °C 40 °C	
1111 00000	≤ CAN 15M	320 960 [mm]	0 0 40 0	0 0 40 0
UDE	≤ US #7	17 ½ 39 ¾ [inch]	4405 40405	44.05 404.05
HDE, HIT-P 8000D	≤ EU 20mm	400 1000 [mm]	41°F 104 °F 5 °C 40 °C	
	≤ CAN 20M	390 1000 [mm]	3 0 40 0	3 0 40 0

©	٥ —	HAS/ HIT-V	Rebar	HIT-RB	HIT-SZ	HIT-DL	ніт-онс
d ₀ [inch]	d ₀ [inch]	d [ii	nch]	[inch]	[inch]	[inch]	Art. No.
7/16	-	3/8	-	7/16	-	-	
1/2	1/2	-	#3	1/2	1/2	1/2	
9/16	⁹ /16	1/2	10M	9/16	9/16	⁹ /16	387551
5/8	5/8	-	#4	5/8	5/8	9/16	
3/4	3/4	5/8	15M #5	3/4	3/4	3/4	
7/8	7/8	3/4	#6	7/8	7/8	7/8	
1	1	7/8	20M #7	1	1	1	387552
1 1/8	1 1/8	1	#8	1 1/8	1 1/8	1	
1 1/4	-	-	25M	1 1/4	1 1/4	1	
13/8	-	1 1/4	#9	13/8	1 ³ /8	13/8	
1 1/2	-	-	30M #10	1 1/2	1 1/2	13/8	

HIT-RE-M Art. No.	N	HIT-OHW Art. No.
337111	HDM 330 HDM 500 HDE 500-A18	387550


Ø ====================================	h _{et}	R	
d₀ [inch]	[inch]	Art. No. 381215	
⁷ / ₁₆ " 1 ¹ / ₈ "	23/8"20"	V	≥ 6 bar/90 psi @ 6 m³/h
1 1/4"1 1/2"	4" 25"	-	≥ 140 m ³ /h/≥ 82 CFM

0 000		HT-V	Rebar	HIT-RB	HIT-SZ	HIT-DL	HIT-OHC
d_0 [mm]	d_0 [mm]	d [n	nm]	[mm]	[mm]		Art. No.
10	-	8	-	10	-	_	
12	12	10	8	12	12	12	
14	14	12	10	14	14	14	387551
16	16		12	16	16	16	007001
18	18	16	14	18	18	18	
20	20	-	16	20	20	20	
22	22	20	18	22	22	20	
25	25	-	20	25	25	25	
28	28	24	22	28	28	25	
30	-	27	-	30	30	25	007550
32	32	-	24/25	32	32	32	387552
35	35	30	26/28	35	35	32	
37	-	-	30	37	37	32	
40	-	-	32	40	40	32	

0 	h _{ef}	À	
d_0 [mm]	[mm]	Art. No. 381215	
1032	60500	V	≥ 6 bar/90 psi
3540	100640	-	≥ 140 m³/h

HIT-DL: $h_{ef} > 250 \ mm$

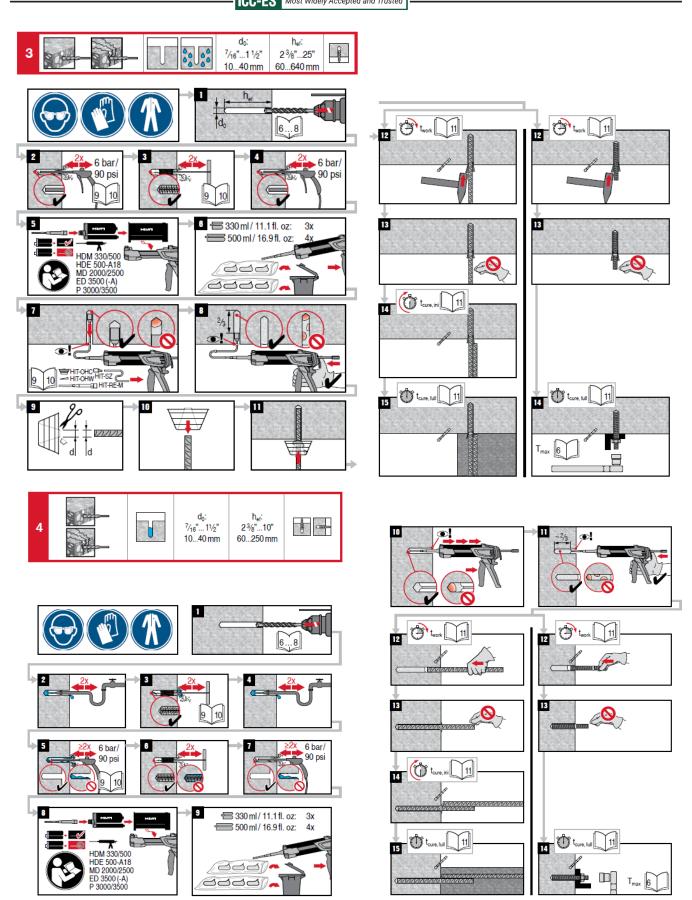


FIGURE 7—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (CONTINUED)

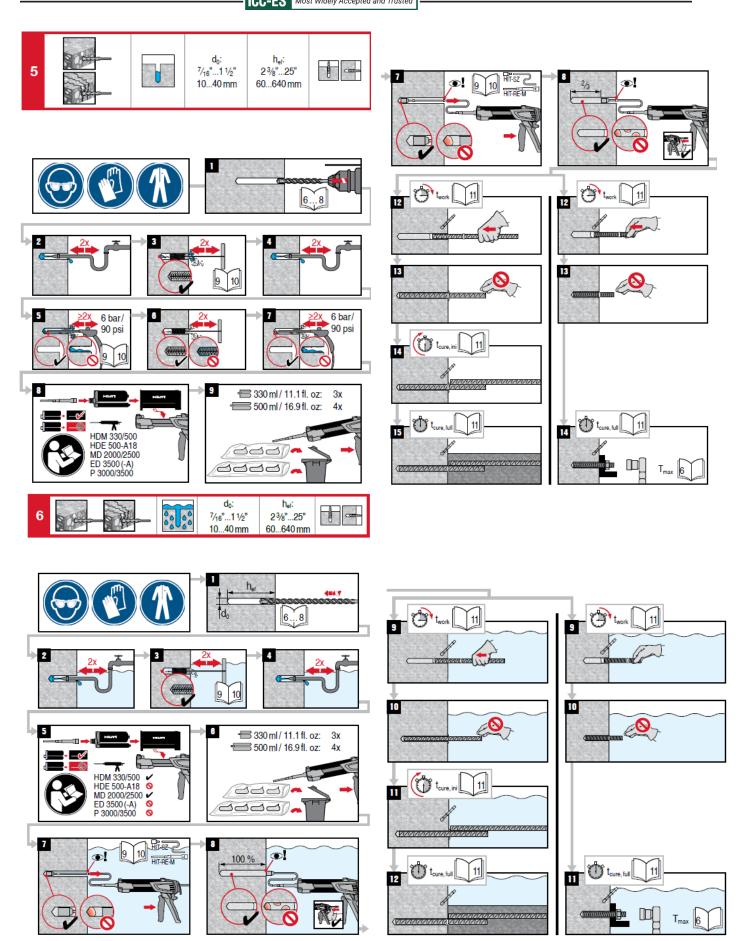


FIGURE 7—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (CONTINUED)

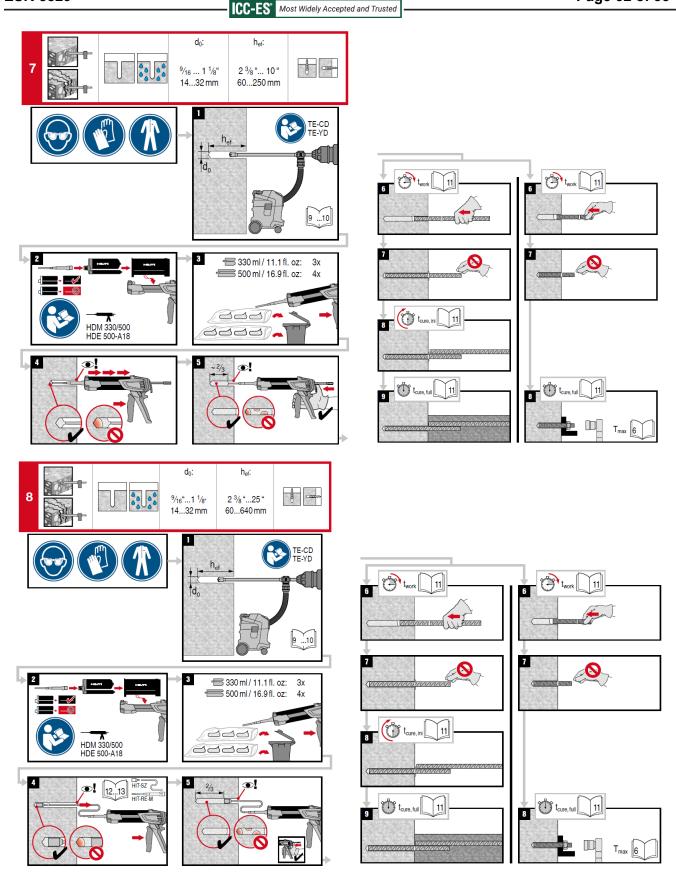
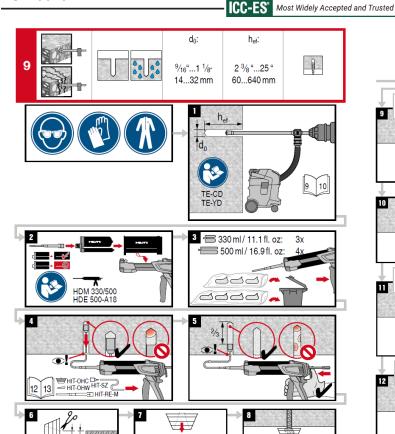
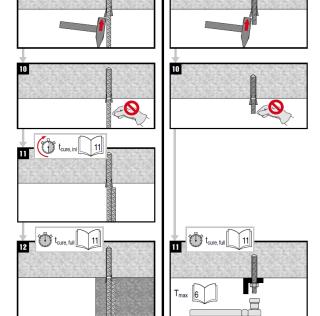




FIGURE 7—MANUFACTURER'S PRINTED INSTALLATION INSTRUCTIONS (MPII) (CONTINUED)

Adhesive anchoring system for rehar and anchor fastenings in concrete

- ▶ Prior to use of product, follow the instructions for use and the legally obligated safety precautions.
- See the Safety Data Sheet for this product.

HIII HIT-RE 100

Contains epoxy constituents. May produce an allergic reaction.(A)

Contains: reaction product: bisphenol-A-(epichlorhydrin) epoxy resin MW ≤ 700 (A), reaction product: bisphenol-F epichlor hydrin resin MW≤700 (A), m-xylenediamine,(B)

Danger

H314 Causes severe skin burns and eye damage.(B) May cause an allergic skin reaction.(A,B) H317 H411 Toxic to aquatic life with long lasting effects.(A)

P280 Wear protective gloves/protective clothing/eye protection/face protection

P260 P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

If skin irritation or rash occurs: Get medical advice/attention.

If eye irritation persists: Get medical advice/attention. P333+P313

Protective gloves: EN 374; Material of gloves: Nitrile rubber, NBR

Avoid direct contact with the chemical/ the product/ the preparation by organizational measures. Final selection of appropriate protective equipment is in the responsibility of the user

Disposal considerations

► Leave the Mixer attached and dispose of via the local Green Dot collecting system

or EAK waste material code 15 01 02 plastic packaging.

Full or partially emptied packs:

- dispose of as special waste in accordance with official regulations.
 EAK waste material code: 20 01 27* paint, inks, adhesives and resins containing dangerous substances.
 - or waste material code: EAK 08 04 09* waste adhesives and sealants containing organic solvents or other dangerous

Content: Weight: 330 ml / 11.1 fl.oz 500 ml / 16.9 fl.oz 480 g / 16.9 oz 727 g / 25.6 oz

Warranty: Refer to standard Hilti terms and conditions of sale for warranty information

Failure to observe these installation instructions, use of non-Hilti anchors, poor or questionable concrete conditions, or unique applications may affect the reliability or performance of the fastenings.

Product Information

- Always keep this instruction for use together with the product. Ensure that the instruction for use is with the product when it is given to other persons.
- Safety Data Sheet: Review the SDS before use.

g t_{work}

- Check expiration date: See expiration date imprint on folipack manifold (month/year). Do not use expired product. Foil pack temperature during usage: +5 °C to 40 °C / 41 °F to 104 °F.
- Conditions for transport and storage: Keep in a cool, dry and dark place between +5 °C to 25 °C /
- 41 °F to 77 °F.

 For any application not covered by this document / beyond values specified, please contact Hilli.
- Partly used foil packs must be used up within 4 weeks. Leave the mixer attached on the foil pack manifold and store under the recommended storage conditions. If reused, attach a new mixer and discard the initial quantity of anchor adhesive.

⚠ WARNING

! Improper handling may cause mortar splashes. Eye contact with mortar may cause irreversible eye damage!

- Always wear tightly sealed safety glasses, gloves and protective clothes before handling the mortal
- Never start dispensing without a mixer properly screwed on. Attach a new mixer prior to dispensing a new foil pack (snug fit).
- Caution! Never remove the mixer while the foil pack system is under pressure. Press the release button of the
- dispenser to avoid mortar splashing.

 Use only the type of mixer supplied with the adhesive. Do not modify the mixer in any way. Never use damaged foil packs and/or damaged or unclean foil pack holders.
- ! Poor load values / potential failure of fastening points due to inadequate borehole cleaning. The boreholes must be dry and free of debris, dust, water, ice, oil, grease and other contaminants prior to adhesive injection.

- For blowing out the borehole blow out with oil free air until return air stream is free of noticeable dust.
 For flushing the borehole flush with water line pressure until water runs clear.
 Important! Remove all water from the borehole and blow out with oil free compressed air until borehole is completely
- dried before mortar injection (not applicable to hammer drilled hole in underwater application). ! Ensure that boreholes are filled from the back of the boreholes without forming air voids.
 - If necessary, use the accessories / extensions to reach the back of the borehole.
- For overhead applications use the overhead accessories HIT-SZ / IP and take special care when inserting the faste-
- ning element. Excess adhesive may be forced out of the borehole. Make sure that no mortar drips onto the installer.

 If a new mixer is installed onto a previously-opened foil pack, the first trigger pulls must be discarded.
- A new mixer must be used for each new foil pack

ICC-ES Evaluation Report

ESR-3829 LABC and LARC Supplement

Reissued April 2022 Revised March 2024

This report is subject to renewal April 2024.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 100 ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-RE 100 Adhesive Anchoring System and Post-Installed Reinforcing Bar System, described in ICC-ES evaluation report <u>ESR-3829</u>, have also been evaluated for compliance with the codes noted below as adopted by Los Angeles Department of Building and Safety (LADBS).

Applicable code editions:

- 2023 City of Los Angeles Building Code (LABC)
- 2023 City of Los Angeles Residential Code (LARC)

2.0 CONCLUSIONS

The Hilti HIT-RE 100 Adhesive Anchoring System and Post-Installed Reinforcing Bar System, described in Sections 2.0 through 7.0 of the evaluation report <u>ESR-3829</u>, comply with LABC Chapter 19, and LARC, and are subject to the conditions of use described in this report.

3.0 CONDITIONS OF USE

The Hilti HIT-RE 100 Adhesive Anchoring System and Post-Installed Reinforcing Bar System described in this evaluation report supplement must comply with all of the following conditions:

- All applicable sections in the evaluation report ESR-3829.
- The design, installation, conditions of use and labeling of the anchors are in accordance with the 2021 International Building Code® (IBC) provisions noted in the evaluation report <u>ESR-3829</u>.
- The design, installation and inspection are in accordance with additional requirements of LABC Chapters 16 and 17, as applicable.
- Under the LARC, an engineered design in accordance with LARC Section R301.1.3 must be submitted.
- The allowable and strength design values listed in the evaluation report and tables are for the connection of the anchors to
 the concrete. The connection between the anchors and the connected members shall be checked for capacity (which may
 govern).
- For use in wall anchorage assemblies to flexible diaphragm, anchors shall be designed per the requirements of City of Los Angeles Information Bulletin P/BC 2020-071.

This supplement expires concurrently with the evaluation report, reissued April 2022 and revised March 2024.

ICC-ES Evaluation Report

ESR-3829 FBC Supplement

Reissued April 2022 Revised March 2024

This report is subject to renewal April 2024.

www.icc-es.org | (800) 423-6587 | (562) 699-0543

A Subsidiary of the International Code Council®

DIVISION: 03 00 00—CONCRETE Section: 03 16 00—Concrete Anchors

DIVISION: 05 00 00—METALS

Section: 05 05 19—Post-Installed Concrete Anchors

REPORT HOLDER:

HILTI, INC.

EVALUATION SUBJECT:

HILTI HIT-RE 100 ADHESIVE ANCHORS AND POST INSTALLED REINFORCING BAR CONNECTIONS IN CRACKED AND UNCRACKED CONCRETE

1.0 REPORT PURPOSE AND SCOPE

Purpose:

The purpose of this evaluation report supplement is to indicate that the Hilti HIT-RE 100 Adhesive Anchoring System, described in ICC-ES evaluation report ESR-3829, has also been evaluated for compliance with the codes noted below.

Applicable code editions:

- 2023 Florida Building Code—Building
- 2023 Florida Building Code—Residential

2.0 CONCLUSIONS

The Hilti HIT-RE 100 Adhesive Anchoring System, described in Sections 2.0 through 7.0 of ICC-ES evaluation report ESR-3829, complies with the *Florida Building Code—Building* and the *Florida Building Code—Residential*. The design requirements must be determined in accordance with the *Florida Building Code—Building* or the *Florida Building Code—Building* or the *Florida Building Code—Building Code—Build*

Use of the Hilti HIT-RE 100 Adhesive Anchoring System has also been found to be in compliance with the High-Velocity Hurricane Zone provisions of the *Florida Building Code—Building* and the *Florida Building Code—Residential* with the following condition:

a) For anchorage of wood members, the connection subject to uplift, must be designed for no less than 700 pounds (3114 N).

For products falling under Florida Rule 61G20-3, verification that the report holder's quality-assurance program is audited by a quality-assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity (or the code official, when the report holder does not possess an approval by the Commission).

This supplement expires concurrently with the evaluation report, reissued April 2022 and revised March 2024.

