

HAC-C-P Hot rolled Cast-in anchor channel

Technical Datasheet

Update: Jan-23

HAC-C-P Hot rolled

Cast-in anchor channels with increased steel capacity for a variety of applications

Anchor channel version

HAC-C-P 40/22 HAC-C-P 50/30

HAC-C-P 40L HAC-C-P 50L

HBC-40/22 HBC-50/30

Benefits

- New resilience thanks to higher static tensile and shear load values, the same anchor channels can be specified for almost any load
- Personal and software-based technical support - with the Hilti PROFIS Anchor Channel software and the Hilti engineering support team you can optimize your planning and construction
- For even shorter assembly times end caps with nail holes, ready-to-use filling foam and many other extras support faster and easier assembly of these anchor rails
- Available in stainless steel and hot-dip galvanized versions - for optimal corrosion protection depending on the environmental conditions

Base material

Concrete (non-cracked)

Concrete (cracked)

Load conditions

Static/ quasi-static

Fatigue

Fire resistance

Static 2D loading

Static 3D loading

Other information

European Technical Assessment

CE conformity

PROFIS Anchor channel design Software

Corrosion resistance

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical assessment a)	DIBt, Berlin	ETA-17/0336 of 09.11.2020

a) All data given in this section according to ETA-17/0336 of 09.11.2020

Static and quasi-static loading

All data in this section applies to:

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- No influence of bolt type and diameter
- Decisive failure mode local flexure of channel lips
- Shear load applied perpendicular to the longitudinal axis of the channel

Effective anchorage depth

Anchor channel type			HAC-C-P				
Anchor channel size			40/22	40L	50/30	50L	
Minimum effective anchorage depth	$h_{\text{ef,min}}$	[mm]	91	106	106	148	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	120	162	

Characteristic resistance

Anchor channel type			HAC-C-P				
Anchor channel size			40/22	40L ^{a)}	50/30	50L ^{a)}	
Tension	N^0 Rk,s,I	[kN]	47	',9	50,5		
Shear	V^0 Rk,s,I	[kN]	55	5,0	91,7		

a) HAC-C-P 40L and 50L have increased length of anchors. Therefore they have increased concrete resistance compared to standard HAC-C-P 40/22 and 50/30 which is not reflected in the table

Design resistance

Anchor channel type			HAC-C-P						
Anchor channel size			40/22 40L a) 50/30 50L a)						
Tension	$N^0_{Rd,s,l}$	[kN]	26	5,6	28,1				
Shear	$V^0_{Rd,s,l}$	[kN]	30),6	50,9				

a) HAC-C-P 40L and 50L have increased length of anchors. Therefore they have increased concrete resistance compared to standard HAC-C-P 40/22 and 50/30 which is not reflected in the table

Note: Values shown in table above are representing only limited amount of the possible failure modes and might be used only for comparison of different products. For detailed design of fixing point please use Hilti PROFIS Anchor Channel software, consult ETA-17/0336 or contact Hilti Engineering team.

Characteristic resistance for bolts

Channel bolt d	liameter		M8	M10	M12	M16	M20		
Channel bolt ty	Channel bolt type				HBC-40/22				
	HBC-40/22 4.6				23,2		_ a)		
Tension	HBC-40/22 8.8	N _{Rk,s}	[kN]	_ a)	_ a)	67,4	125,6	_ a)	
	HBC-40/22 A4-70				20,5	59,0	91,0	- 3)	
	HBC-40/22 4.6				13,9		_ a)		
Shear	HBC-40/22 8.8	$V_{Rk,s}$	[kN]	_ a)	23,2	33,7	62,8	_ a)	
	HBC-40/22 A4-70	4-70			24,4	35,4	65,9	- 3)	
Channel bolt type			HBC-50/30						
	HBC-50/30 4.6			_ a)					
Tension	HBC-50/30 8.8	N _{Rk,s}	[kN]	_ a)	_ a)	67,4	125,6	147,1	
	HBC-50/30 A4-70				,	59,0	109,9	121,2	
	HBC-50/30 4.6					_ a)			
Shear	HBC-50/30 8.8	V _{Rk,s}	[kN]	_ a)	_ a)	33,7	62,8	101,7	
	HBC-50/30 A4-70				,	35,4	65,9	102,9	
Channel bolt type			HBC-50/30-N						
Tension	HBC-50/30-N	$N_{Rd,s}$	[kN]		·		125,6	186,6	
Shear	HBC-50/30-N	$V_{Rd,s}$	[kN]			•	62,8	101,7	

a) Product is not available in standard Hilti portfolio. For additional information please contact Hilti Engineering team.

Design resistance for bolts

Channel bolt	t diameter			M8	M10	M12	M16	M20	
Channel bolt	Channel bolt type				HBC-40/22				
	HBC-40/22 4.6				11,6		_ a)		
Tension	HBC-40/22 8.8	$N_{Rd,s}$	[kN]	_ a)	_ a)	44,9	83,7	_ a)	
	HBC-40/22 A4-70				11,0	31,6	48,7	- 4)	
	HBC-40/22 4.6				8,3		_ a)		
Shear	HBC-40/22 8.8	$V_{Rd,s}$	[kN]	_ a)	18,6	27,0	50,2	_ a)	
	HBC-40/22 A4-70				15,6	22,7	42,2		
Channel bolt	type			HBC-50/30					
	HBC-50/30 4.6				_ a)				
Tension	HBC-50/30 8.8	$N_{Rd,s}$	[kN]	_ a)	_ a)	44,9	84,5	98,1	
	HBC-50/30 A4-70					31,6	58,8	64,8	
	HBC-50/30 4.6					_ a)			
Shear	HBC-50/30 8.8	V _{Rd,s}	[kN]	_ a)	_ a)	27,0	50,2	81,4	
	HBC-50/30 A4-70				22,7	42,4	66,0		
Channel bolt type			HBC-50/30-N						
Tension	HBC-50/30-N	$N_{Rd,s}$	[kN]	- a) 83,7 124,4			124,4		
Shear	HBC-50/30-N	$V_{Rd,s}$	[kN]		_ a)		50,2	81,4	

b) Product is not available in standard Hilti portfolio. For additional information please contact Hilti Engineering team.

Note: combined effects of loads (tension and shear) must be verified additionally. For detailed design of fixing point please use Hilti PROFIS Anchor Channel software, consult ETA-17/0336 or contact Hilti Engineering team.

Fire resistance

All data in this section applies to:

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- No influence of bolt type and diameter
- Decisive failure mode steel failure
 - (one of the following: anchor, connection between anchor and channel, local flexure of channel lip)
- Shear load applied perpendicular to the longitudinal axis of the channel
- Partial safety factor for resistance under fire exposure $\gamma_{M,fi}=1,0$ (in absence of other national regulations)

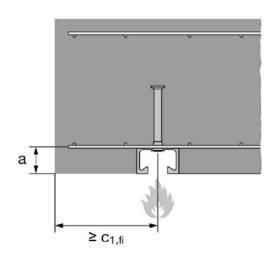
Effective anchorage depth

Anchor channel type	HAC-C-P					
Anchor channel size			40/22	40L	50/30	50L
Minimum effective anchorage depth	$h_{\text{ef,min}}$	[mm]	91	106	106	148
Minimum thickness of concrete member	h _{min}	[mm]	100	120	120	162

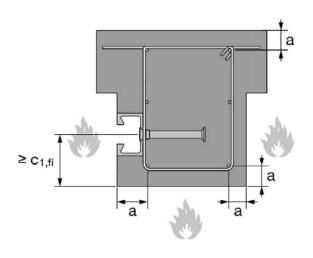
Characteristic resistance

Anchor chann	Anchor channel type			HAC-C-P				
Anchor chann	hor channel size			40/22	40L	50/30	50L	
Fire exposure								
Tension	Bolt M10	N _{Rk,s,fi}		1,7	7	-		
=	Bolt M12	=	[kN]	3,5		3,8		
Shear	Bolt ≥ M16	$V_{Rk,s,fi}$		3,5		3,9		
Fire exposure	R120							
Tension	Bolt M10	N _{Rk,s,fi}		0,9	9	_		
=	Bolt M12	=	[kN]	1,5	5	1,	9	
Shear	Bolt ≥ M16	$V_{Rk,s,fi}$		1,5	5	2,	4	

Design resistance


Design resista							
Anchor chann	Anchor channel type			HAC-C-P			
Anchor chann	Anchor channel size			40/22	40L	50/30	50L
Fire exposure	R60						
Tension	Bolt M10	$N_{Rd,s,fi}$		1,	7		-
=	Bolt M12	=	[kN]	3,5		3,8	
Shear	Bolt ≥ M16	$V_{Rd,s,fi}$		3	3,5		,9
Fire exposure	R120						
Tension	Bolt M10	N _{Rd,s,fi}		0	9		-
=	Bolt M12	=	[kN]	1,	5	1	,9
Shear	Bolt ≥ M16	$V_{Rd,s,fi}$		1	5	2	,4

Note: Values shown in table above are representing only limited amount of the possible failure modes and might be used only for comparison of different products. For detailed design of fixing point please use Hilti PROFIS Anchor Channel software, consult ETA-17/0336 or contact Hilti Engineering team.



Minimum axis distance of reinforcement

Anchor channel type	HAC-C-P					
Anchor channel size			40/22	40L	50/30	50L
Fire exposure R60						
Minimum axis distance	а	[mm]	3	35		0
Fire exposure R120						
Minimum axis distance	а	[mm]	55		5	5

Fire exposure from one side only

Fire exposure from more than one side

Fatigue resistance

All data in this section applies to:

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- No influence of bolt type and diameter
- Shear load applied perpendicular to the longitudinal axis of the channel

Characteristic resistance under fatigue load

Anchor channel type				HAC-C-P				
Anchor channel size				40/22	40L	50/30	50L	
	≤ 10 ⁴	_		16,5		20	20,9	
	≤ 10 ⁵	-		7,7		9	,0	
Characteristic resistance under faituge	≤ 10 ⁶		[kN]	3,	2	4	,2	
tension load after n load cycles without	≤ 2·10 ⁶	$\Delta N_{\text{Rk},s,0,n}$		2,	6	3	,7	
static preload (N _{Ed} = 0)	≤ 5·10 ⁶	- -		2,	2	3	,4	
	≤ 10 ⁸			2,0		3	,3	
	> 108			1,8		3	3,2	
	≤ 10 ⁴	_	[-]	0,736				
	≤ 10 ⁵			0,665				
Reduction factor after n load cycles	≤ 10 ⁶			0,600				
without static preload ($N_{Ed} = 0$) for: $\Delta N_{Rk,p,0,n} = \eta_{c,fat} \cdot N_{Rk,p}$	≤ 2·10 ⁶	$\eta_{c,fat}$		0,582				
$\Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c}$ $\Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c}$	≤ 5·10 ⁶			0,559				
·	≤ 6·10 ⁷			0,500				
	> 10 ⁷				0,5	500		
Characteristic fatigue limit resistance without static preload (N _{Ed} = 0)	$(n \to \infty)$	$\Delta N_{\text{Rk},s,0,\infty}$	[kN]	1,	.8	3	,2	
Reduction factor for fatigue limit resistance without static preload (N _{Ed} = 0) for: $ \Delta N_{Rk,p,0,n} = \eta_{c,fat} \cdot N_{Rk,p} $ $ \Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c} $	$(n \to \infty)$	ηc,fat	[-]		0,5	500		

Note: Values shown in table above are representing only limited amount of the possible failure modes and might be used only for comparison of different products. For detailed design of fixing point please use Hilti PROFIS Anchor Channel software, consult ETA-17/0336 or contact Hilti Engineering team.

Materials

Material quality for anchor channels

Part		Material			
Channel profile	HAC-C	Carbon steel 1.0038, 1.0044, 1.0045 according to EN 10025:2005 Carbon steel 1.0976, 1.0979 according to EN 10139:2013 Hot-dip galvanized ≥50 µm according to EN ISO 10684:2004/AC:2009			
	HAC-C A4	Stainless steel 1.4362, 1.4401, 1.4404, 1.4571, 1.4578 according to EN 10088:2005			
Anchor	HAC-C	Carbon steel 1.0038, 1.0213, 1.0214 according to EN 10025:2005 Carbon steel 1.5523, 1.5535 according to EN 10263:2002-02 Hot-dip galvanized ≥50 µm according to EN ISO 10684:2004/AC:2009			
HAC-C A4 a)		Stainless steel 1.4362, 1.4401, 1.4404, 1.4571, 1.4578 according to EN 10088:2005			

a) Anchors made of carbon steel may also be used if they are welded and their concrete cover is more than 50 mm and the tempering colors are removed

Material quality for channel bolts

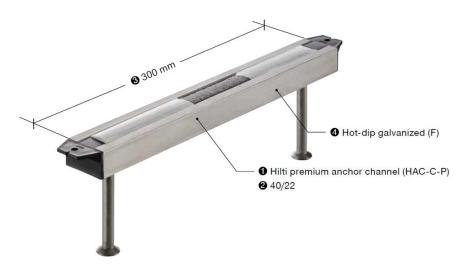
Part		Material
	НВС	Carbon steel grade 4.6 and 8.8 according to ISO 898-1:2013 Electroplated according to EN ISO 4042:1999
Channel bolts	HBC F	Carbon steel grade 4.6 and 8.8 according to ISO 898-1:2013 Hot-dip galvanized ≥50 µm according to EN ISO 10684:2004/AC:2009
	HBC A4	Stainless steel grade 50 or 70 according to EN ISO 3506:2009
	Galvanized	Carbon steel, hardness class A ≥ 200 HV Electroplated according to EN ISO 4042:1999
Plain washer	F	Carbon steel, hardness class A ≥ 200 HV Hot-dip galvanized ≥50 µm according to EN ISO 10684:2004/AC:2009
	A4	Stainless steel 1.4401, 1.4404, 1.4571, 1.4578 according to EN 10088:2005
	Galvanized	Property class 5 or 8 according to EN ISO 898-2:2012 Electroplated according to EN ISO 4042:1999
Hexagonal nut a)	F	Property class 5 or 8 according to EN ISO 898-2:2012 Hot-dip galvanized ≥50 µm according to EN ISO 10684:2004/AC:2009
	A4	Property class 50, 70 or 80 according to EN ISO 3506:2009

a) Hexagonal nuts according to DIN 934: 1987-10 for channel bolts made from carbon steel (4.6) and stainless steel

Mechanical properties

Part				HAC-C / HBC
Nominal tensile strength	Carbon steel 4.6			400
	Carbon steel 8.8	f_{uk}	[N/mm²]	800 / 830 ^{a)}
	Stainless steel A4-50	Tuk		500
	Stainless steel A4-70			700
	Carbon steel 4.6			240
Yield strength	Carbon steel 8.8	f.	[N]/ma ma 2]	640 / 660 a)
riela stierigtii	Stainless steel A4-50	f_{yk}	[N/mm²]	210
	Stainless steel A4-70			450

a) Material properties according to EN ISO 898-1


Corrosion class

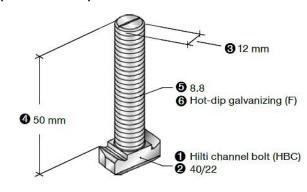
Class / Mark	Material / Coating type
G	Carbon steel, electroplated
F (HDG)	Carbon steel, hot-dip galvanized
R (A4)	Stainless steel

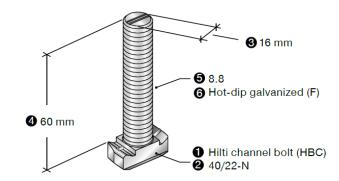
Nomenclature of HAC-C-P anchor channels (example)

Hilti anchor channel type	Profile type and size	Channel length	Finish or material
0	2	3	4
HAC-C-P	40/22	300	F (HDG)
HAC-C-P	40L	300	F (HDG)

HAC-C-P 40/22 300F

HAC-C-P 40L 300F

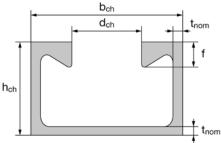



Nomenclature of HBC channel bolts (example)

Hilti channel bolt	Bolt type	Diameter	Bolt length	Steel grade	Finish or material
0	2	3	4	5	6
HBC	40/22	M12	50	8.8	F (HDG)
HBC	40/22-N	M16	60	8.8	F (HDG)

HBC-40/22 M12x50 8.8 F (standard bolt)

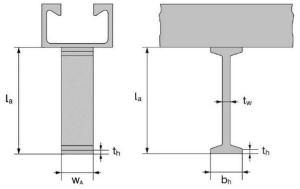
HBC-40/22 M16x60 8.8F (notched bolt)



Dimensions of anchor channels

Dimensions of channel profile

Anchora channel type			HAC-C-P				
Anchor channel size			40/22	40/22 40L		50L	
Channel width	b _{ch}	[mm]	40,1		49,6		
Channel height	h _{ch}	[mm]	23,0		30	,0	
Nominal thickness	t_{nom}	[mm]	2,	2,7 3,2		2	
Width of channel opening	d_{ch}	[mm]	18	18,0		2,5	
Height of channel lips	f	[mm]	6,0		8	1	
Moment of inertia	lу	[mm ⁴]	21504 577		781		



HAC-C-P 40/22; HAC-C-P 50/30

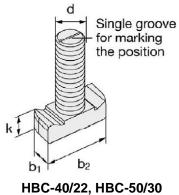

Dimensions of anchors

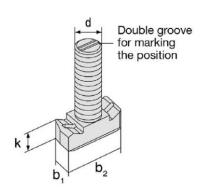
Anchor channel type				HAC	-C-P	
Anchor channel size			40/22	40L	50/30	50L
Version with welded I-ancl	hor					
Minimum anchor length	min. la	[mm]	125,0	_ a)	125,0	_ a)
Web thickness	tw	[mm]	6,0	_ a)	6,0	_ a)
Width of the head	b _h	[mm]	25,0	_ a)	25,0	_ a)
Head thickness	th	[mm]	5,0	_ a)	5,0	_ a)
Width (cutting length)	WA	[mm]	20,0	_ a)	25,0	_ a)
Area of the head	A _h	[mm]	380	_ a)	475	_ a)
Version with round anchor	r					
Minimum anchor length	min. la	[mm]	70,0	83,2	78,0	118,3
Diameter of anchor	da	[mm]	10,0	10,0	11,0	11,0
Diameter of round anchor head	dh	[mm]	21,5	21,5	26,0	26,0
Thickness of round anchor head	th	[mm]	2,2	2,2	2,5	2,6
Area of round anchor head	Ah	[mm]	285	285	436	436

a) Product is not abailable

Version with welded I-Anchor

Version with round anchor


Dimensions of channel bolts

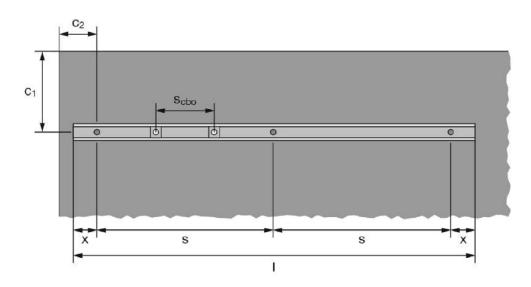

Dimensions of channel bolts

Channel bolt type				HBC-40/22		HBC-40/22-N	
Appropriate anchor ch	nannel		HAC-C-P 40/22; HAC-C-P 40L				
Nominal diameter	d	[mm]	10,0	12,0	16,0	16,0	
Width (1)	b ₁	[mm]	14,0	14,0	17,0	17,0	
Width (2)	b ₂	[mm]	33,0	33,0	33,0	33,0	
Thickness	k	[mm]	10,5	11,5	11,5	11,5	

Dimensions of channel bolts

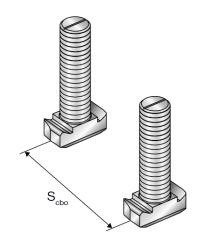
Channel bolt type		HBC-50/30	HBC-50/30-N				
Appropriate anchor c		HAC-C-P 50/30; HAC-C-P 50L					
Nominal diameter	d	[mm]	12,0	16,0	20,0	16,0	20,0
Width (1)	b ₁	[mm]	17,0	17,0	21,0	21,0	21,0
Width (2)	b ₂	[mm]	42,0	42,0	42,0	42,0	42,0
Thickness	k	[mm]	14,5	15,5	15,5	15,5	15,5

HBC-40/22-N, HBC-50/30-N



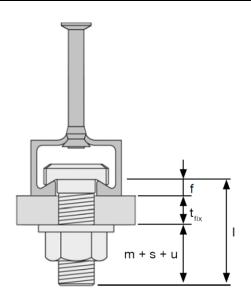
Setting information

Setting details for anchor channels


Anchor channel type	HAC-C-P					
Anchor channel size	40/22	40L	50/30	50L		
Minimum effective embedmdent depth	h _{ef,min}	[mm]	91	106	106	148
Nominal embedment depth	h _{nom}	[mm]	93,2	108,2	108,5	150,5
Minimum spacing	Smin	[mm]	5	0	50 a)	50
Maximum spacing	Smax	[mm]		25	50	
End spacing	Х	[mm]		25	(b)	
Minimum channel length	I _{min}	[mm]		10	00	
Minimum edge distance	C _{min}	[mm]	50 75			5
Minimum thickness of concrete member	h _{min}	[mm]	100	120	120	162

- s_{min} = 100 mm when used in combination with notched bolts. The end spacing may be increased from 25 mm to 35 mm X = 25 mm for welded I-anchors

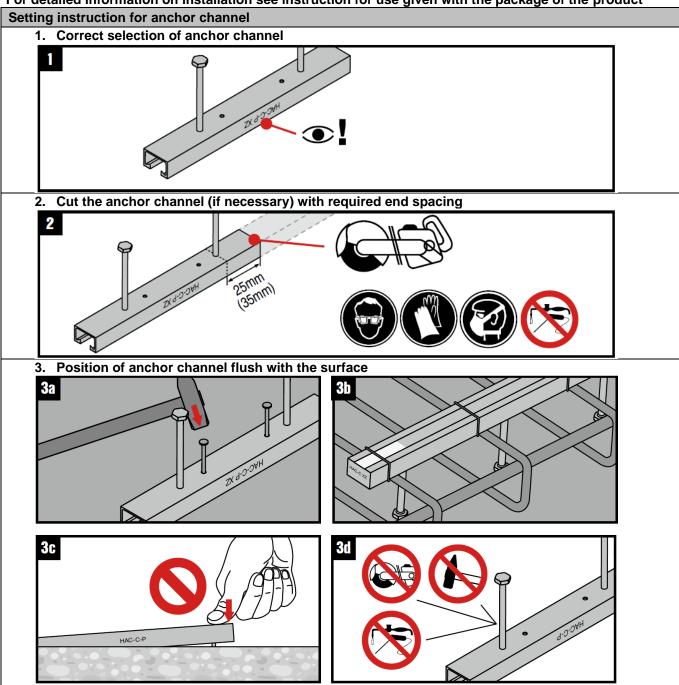
Setting details for channel bolts


Anchor channel size			M10	M12	M16	M20
Minimum spacing between channel bolts	Scbo,min	[mm]	50	60	80	100

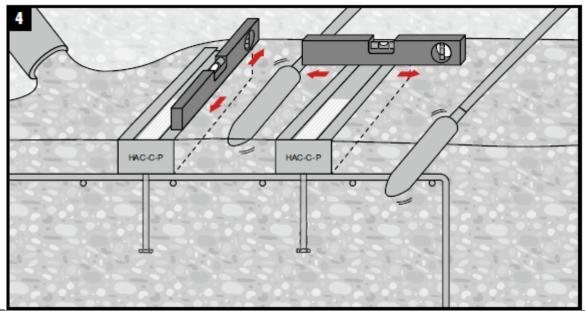
Determination of the minimum required T-bolt length

Anchor channel type					HAC-C-P				
Anchor channel size					40/22; 40L 50/30; 50L				
Channel bolt type				HBC 40/22	HBC 40/22-N	HBC 50/30	HBC 50/30-N		
Height of channel lip		f	[mm]	6,0	6,0	8,0	8,0		
	Bolt M10			13,9	-	-	-		
Thickness of nut, washer and	Bolt M12	_	[]	17,3	-	17,3	-		
channel bolt projection	Bolt M16	— m + s + u	[mm]	21,8	21,8	21,8	21,8		
	Bolt M20	_		-	-	27,0	27,0		

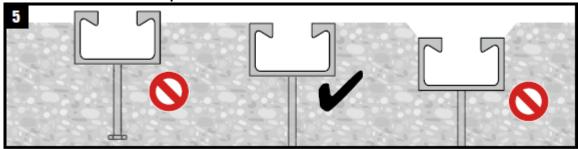
Dimensions

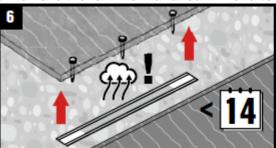

2 interiores							
I	[mm]	nominal length of channel bolt					
t _{fix}	[mm]	fastenable thickness (thickness of the attached part)					
f	[mm]	height of channel lip					
m	[mm]	thickness of the nut (ISO 4032)					
S	[mm]	thickness of the washer					
u	[mm]	channel bolt projection					

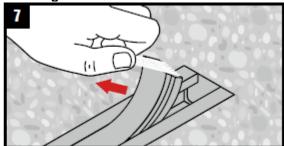
Required T-Bolt length : $I = t_{fix} + f + (m + s + u)$


Setting instructions

*For detailed information on installation see instruction for use given with the package of the product

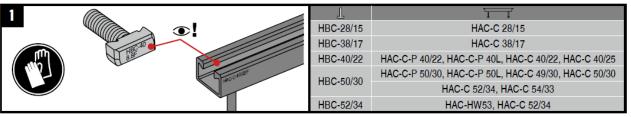


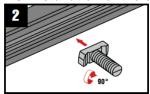

4.Pouring the concrete

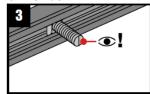


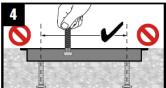
5. Check anchor channels position

6. Remove the formwork and foam filler after hardening of concrete

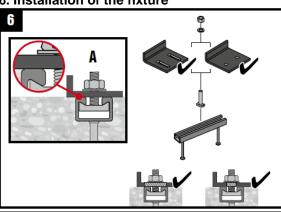


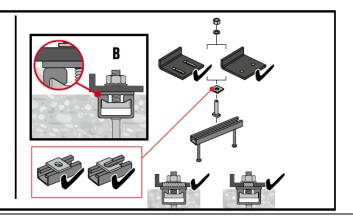


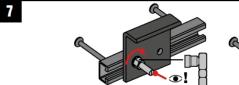

*For detailed information on installation see instruction for use given with the package of the product Setting instruction for channel bolts


1. Correct selection of channel bolt

2-5. Installation of the channel bolt







6. Installation of the fixture

7. Apply the installation torque Tinst

Channel bolt		T _{Inst} [Nm]					
		A	B				
		4.6, 8.8, A4-50, A4-70	4.6	8.8	A4-50	A4-70	
	M8	7	-	20	7	15	
HBC-28/15	M10	10		40		30	
	M12	13		60		50	
	M10	15	13	15		22	
HBC-38/17	M12	25	_	45		50	
	M16	40		100		90	
	M10	15	13	15		22	
HBC-40/22	M12	25		45	_	50	
	M16	30		100		90	
	M12	25		45		50	
HBC-50/30	M16	55	_	100		130	
	M20	55		360		250	
HBC-52/34	M20	55		360		-	