

Injection mortar system		Benefits
MIN HT-FIE TO	Hilti HIT-RE 10 580 ml hard cartridges	 suitable for non-cracked concrete C20/25 to C50/60 suitable for dry and water saturated concrete suitable for overhead fastenings
	Static mixer	
Complete a social control of the state of th	Rebar B500 B (φ8 - φ32)	

1 Feb-17

Static and quasi-static loading

Pre-calculated values1) - anchorage length

Rebar yield strength f_{yk} =500 N/mm², concrete C25/30, good bond conditions

Rebar-size	Anchorage length	Design value	Mortar volume ²⁾	Overlap length	Design value	Mortar volume ²⁾
	I _{bd} [mm]	N _{Rd} [kN]	V _M [ml]	I₀ [mm]	N _{Rd} [kN]	V _M [ml]
	150	10,2	(6) ³⁾ 12	300	20,4	$(11)^{3)}$ 23
ф8	250	17,0	(9) ³⁾ 19	310	21,0	$(11)^{3)}$ 24
	322	21,9	(11) ³⁾ 24	322	21,9	$(11)^{3)}$ 25
	181	15,4	(8)3) 17	300	25,4	$(13)^{3)}$ 28
φ10	310	26,3	(13)3) 29	350	29,7	$(15)^{3)}$ 32
	403	34,1	$(17)^{3)}$ 37	403	34,1	$(17)^{3)}$ 37
	217	22,1	(11) ³⁾ 23	300	30,5	$(15)^{3)}$ 32
φ12	370	37,7	$(19)^{3)} 40$	400	40,7	$(20)^{3)}$ 43
	483	49,2	(24) ³⁾ 51	483	49,2	(24) ³⁾ 51
	254	30,1	31	315	37,4	39
φ14	350	41,6	43	400	47,5	49
	500	59,4	61	500	59,4	61
	290	39,3	40	360	48,9	49
φ16	400	54,3	55	400	54,3	55
	500	67,9	68	500	67,9	68
	362	61,5	77	450	76,3	96
φ20	420	71,3	90	470	79,7	100
	500	84,8	107	500	84,8	107

¹⁾ Values italic letters correspond to the minimum anchorage length. The maximum permissible load (bold letters) is valid for "good bond conditions" as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7.

Fitness for use

Creep tests have been conducted in accordance with EAD 330087-00-0601 and TR 023 in the following conditions: in dry environment at 43 °C during 90 days.

These tests show an excellent behaviour of the post-installed connection made with HIT-RE 10: low displacements

Durability of Hilti-RE 10 injection mortar:

Condition	Comment	Resistance
Sulphurous atmosphere	23°C	+
High alkalinity	pH = 13,2, 23°C	+

Corrosion resistance of post-installed rebar:

Post-installed rebar connections made with Hilti-RE 10 injection mortar provide the same corrosion resistance as a cast-in-place rebar.

Installation temperature range:

+10°C to +40°C

Service temperature range

Hilti HIT-RE 10 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Feb-17 2

²⁾ Mortar volume according to the equation: $1,2\cdot(d_0^2-d_s^2)\cdot\pi\cdot l_{bd/0}/4$.

³⁾ Value of mortar volume corresponds with minimal nominal diameter of drill bit (see table "Installation equipment").

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature
Temperature range I	-40 °C to +43 °C	+20 °C	+43 °C

Max short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Max long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Working time and curing time

Temperature of the base material T _{BM}	Maximum working time t _{work}	Initial curing time t _{cure,ini} a)	Minimum curing time t _{cure} a)
5°C ≤ T _{BM} ≤ 10°C	5 h	30 h	72 h
10°C < T _{BM} ≤ 15°C	2,5 h	20 h	48 h
15°C < T _{BM} ≤ 20°C	2 h	15 h	36 h
20°C < T _{BM} ≤ 30°C	60 min	10 h	24 h
30°C < T _{BM} ≤ 40°C	30 min	5 h	12 h

a) The curing time data are valid for dry anchorage base only. For water saturated anchorage bases the curing times must be doubled.

Setting

Installation equipment

mstanation equipment											
Rebar – size			φ8	φ10	φ12	φ14	φ16	φ20	φ25	φ28	φ32
Nominal diameter of drill bit	d ₀	[mm]	(10) 12 ^{b)}	(12) 14 ^{b)}	(14) 16 ^{b)}	18	20	25	32	35	40
Rotary hammer			TE2(-A) – TE30(-A) TE40 – TE80								
			E	Blow out	pump (h	_{ef} ≤ 10·d)			-	
Other tools			Compressed air gun ^{c)}			•					
		Set of cleaning brushes ^{d)} , dispenser, piston plug		lug	•						

- b) Both given drill bit diameter can be used.
- Compressed air gun with extension hose for all drill holes deeper than 250 mm (for ϕ 8 to ϕ 12) or deeper than 20- ϕ (for ϕ > 12 mm).
- d) Automatic brushing with round brush for all drill holes deeper than 250 mm (for φ 8 to φ 12) or deeper than 20 φ (for φ > 12 mm).

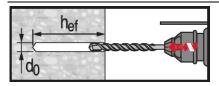
Minimum concrete cover c_{min} of the post-installed rebar

Drilling method	Rebar – size [mm]	Minimum concrete cover c _{min} [mm]			
Drilling method	Kebai – Size [iiiii]	Without drilling aid	With drilling aid		
Hammer drilling	φ < 25	30 + 0,06 · l _v ≥ 2 · φ	$30 + 0.02 \cdot l_v \ge 2 \cdot \phi$	COMMON AND AND AND AND AND AND AND AND AND AN	
riammer unling	φ≥ 25	40 + 0,06 · I _V ≥ 2 · φ	40 + 0,02 · I _v ≥ 2 · φ		

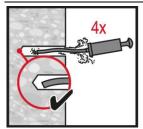
Dispenser and corresponding maximum embedment depth $\ell_{v,max}$

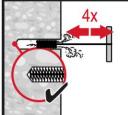
Pohor sizo [mm]	Dispenser (HDM 500, HDE 500-A)
Rebar – size [mm]	$\ell_{ m v,max}$ [mm]
ф8 - ф32	500

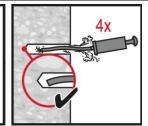
3 Feb-17


Setting instructions

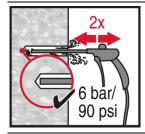
*For detailed information on installation see instruction for use given with the package of the product.

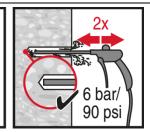



Safety regulations.


Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-RE 10.

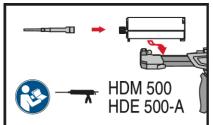
Hammer drilled hole

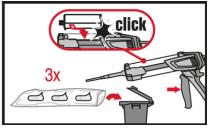


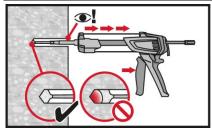


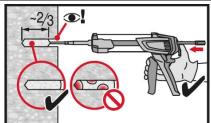
Manual cleaning (MC)

for drill diameters $d_0 \le 20$ mm and drill hole depth $h_0 \le 10$ ·d.

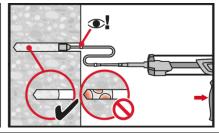




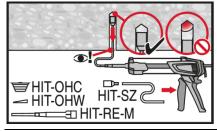

Compressed air cleaning (CAC)

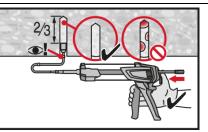

for all drill hole diameters d_0 and drill hole depths $h_0 \le 20 \cdot d$.



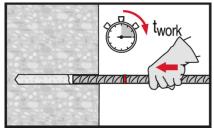

Injection system preparation.

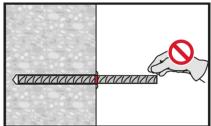
Injection method for drill hole depth $h_{ef} \le 250$ mm.

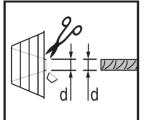


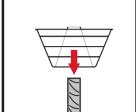


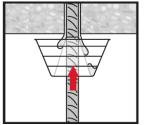
 $\label{eq:local_local_problem} \begin{array}{l} \text{Injection} \text{ method for drill hole depth} \\ h_{\text{ef}} > 250 \text{mm}. \end{array}$

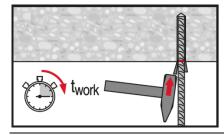

Feb-17 4

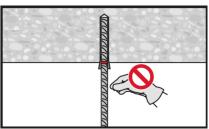


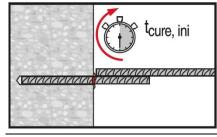


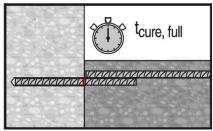

Injection method for overhead application.




Setting element, observe working time "twork"







Setting element for overhead applications, observe working time "twork".

Apply full load only after curing time "tcure".

5 Feb-17